Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:52:04.277Z Has data issue: false hasContentIssue false

INEQUALITIES FOR DRAGOMIR’S MAPPINGS VIA STIELTJES INTEGRALS

Published online by Cambridge University Press:  16 January 2020

TOMASZ SZOSTOK*
Affiliation:
Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007Katowice, Poland email tszostok@math.us.edu.pl

Abstract

We present some inequalities for the mappings defined by Dragomir [‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl.167 (1992), 49–56]. We analyse known inequalities connected with these mappings using a recently developed method connected with stochastic orderings and Stieltjes integrals. We show that some of these results are optimal and others may be substantially improved.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dragomir, S. S., ‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl. 167 (1992), 4956.CrossRefGoogle Scholar
Dragomir, S. S., ‘Further properties of some mappings associated with Hermite–Hadamard inequalities’, Tamkang J. Math. 34(1) (2003), 4956.CrossRefGoogle Scholar
Dragomir, S. S., Milošević, D. S. and Sándor, J., ‘On some refinements of Hadamard’s inequalities and applications’, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 2124.Google Scholar
Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs (Victoria University, Melbourne, 2000).Google Scholar
Kołodziej, T., Nierówności typu Hermite’a–Hadamarda dla odwzorowań Dragomira, Master’s Thesis, University of Silesia, Katowice, Poland (in Polish).Google Scholar
Levin, V. I. and Stečkin, S. B., ‘Inequalities’, Amer. Math. Soc. Transl. (2) 14 (1960), 129.CrossRefGoogle Scholar
Niculescu, C. P. and Persson, L.-E., Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23 (Springer, New York, 2006).CrossRefGoogle Scholar
Ohlin, J., ‘On a class of measures of dispersion with application to optimal reinsurance’, ASTIN Bulletin 5 (1969), 249266.CrossRefGoogle Scholar
Olbryś, A. and Szostok, T., ‘Inequalities of the Hermite–Hadamard type involving numerical differentiation formulas’, Results Math. 67 (2015), 403416.CrossRefGoogle Scholar
Pečarić, J. E., ‘Remarks on two interpolations of Hadamard’s inequalities’, Contributions Macedonian Acad. of Sci. and Arts, Sect. of Math. and Technical Sciences (Scopje) 13 (1992), 912.Google Scholar
Rajba, T., ‘On the Ohlin lemma for Hermite–Hadamard–Fejer type inequalities’, Math. Inequal. Appl. 17(2) (2014), 557571.Google Scholar
Rajba, T., ‘On a generalization of a theorem of Levin and Stečkin and inequalities of the Hermite–Hadamard type’, Math. Inequal. Appl. 20(2) (2017), 363375.Google Scholar
Szostok, T., ‘Ohlin’s lemma and some inequalities of the Hermite–Hadamard type’, Aequationes Math. 89 (2015), 915926.CrossRefGoogle Scholar
Szostok, T., ‘Levin Steckin theorem and inequalities of the Hermite–Hadamard type’, Preprint, arXiv:1411.7708.Google Scholar
Szostok, T., ‘Functional inequalities involving numerical differentiation formulas of order two’, Bull. Malays. Math. Sci. Soc. 41(4) (2018), 20532066.CrossRefGoogle Scholar