Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T01:01:43.223Z Has data issue: false hasContentIssue false

Linear groups: On non-congruence subgroups and presentations

Published online by Cambridge University Press:  17 April 2009

Phillip Ronald Helm
Affiliation:
3/22 Gibbs Street, Balaclava, Victoria 3183, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Cohn, P.M., “On the structure of the GL2 of a ring”, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 365413.CrossRefGoogle Scholar
[2]Grunewald, Fritz J. and Schwermer, Joachim, “Free non-abelian quotients of SL2 over orders of imaginary quadratic numberfields”, J. Algebra 69 (1981), 298304.CrossRefGoogle Scholar
[3]Helm, P.R., “A presentation for SL”, Comm. Algebra (to appear).Google Scholar
[4]Helm, P.R., “Generators and relations for certain linear groups over rings of linear operators”, Comm. Algebra (to appear).Google Scholar
[5]Serre, Jean-Pierre, “Le problème des groupes de congruence pour SL2”, Ann. of Math. (2) 92 (1970), 489527.CrossRefGoogle Scholar
[6]Swan, Richard G., “Generators and relations for certain special linear groups”, Adv. in Math. 6 (1971), 177.CrossRefGoogle Scholar
[7]Zassenhaus, Hans J., “A presentation of the groups PSL(2, p) with three defining relations”, Canad. J. Math. 21 (1969), 310311.CrossRefGoogle Scholar