No CrossRef data available.
Article contents
Local minima of the Gauss curvature of a minimal surface
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let D be a domain in the complex ω-plane and let x: D → R3 be a regular minimal surface. Let M(K) be the set of points ω0 ∈ D where the Gauss curvature K attains local minima: K(ω0) ≤ K(ω) for |ω – ω0| < δ(ω0), δ(ω0) < 0. The components of M(K) are of three types: isolated points; simple analytic arcs terminating nowhere in D; analytic Jordan curves in D. Components of the third type are related to the Gauss map.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 44 , Issue 3 , December 1991 , pp. 397 - 404
- Copyright
- Copyright © Australian Mathematical Society 1991
References
[1]Nitsche, J.C.C., Vorlesungen über Mintmalflächen (Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[2]Osserman, R., A survey of minimal surfaces (Van Nostrand Reinhold Company, New York, 1969).Google Scholar
[3]Ruscheweyh, S. and Wirths, K.-J., ‘On extreme Bloch functions with prescribed critical points’, Math. Z. 180 (1982), 91–105.CrossRefGoogle Scholar
[4]Ruscheweyh, S. and Wirths, K.-J., ‘Extreme Bloch functions with many critical points’, Analysis 4 (1984), 237–247.CrossRefGoogle Scholar