Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:20:23.835Z Has data issue: false hasContentIssue false

LOCALLY FINITE GROUPS WHOSE SUBGROUPS HAVE FINITE NORMAL OSCILLATION

Published online by Cambridge University Press:  20 November 2013

F. DE GIOVANNI*
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126, Napoli, Italy
M. MARTUSCIELLO
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126, Napoli, Italy email maria.martusciello@unina.it
C. RAINONE
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126, Napoli, Italy email caterina.rainone@unina.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If $X$ is a subgroup of a group $G$, the cardinal number $\min \{ \vert X: X_{G}\vert , \vert {X}^{G} : X\vert \} $ is called the normal oscillation of $X$ in $G$. It is proved that if all subgroups of a locally finite group $G$ have finite normal oscillation, then $G$ contains a nilpotent subgroup of finite index.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Amberg, B., Franciosi, S. and de Giovanni, F., Products of Groups (Clarendon Press, Oxford, 1992).Google Scholar
Baer, R., ‘Abzählbar gruppentheoretische Eigenschaften’, Math. Z. 79 (1962), 344363.Google Scholar
Buckley, J., Lennox, J. C., Neumann, B. H., Smith, H. and Wiegold, J., ‘Groups with all subgroups normal-by-finite’, J. Aust. Math. Soc. Ser. A 59 (1995), 384398.Google Scholar
Casolo, C., ‘Groups with finite conjugacy classes of subnormal subgroups’, Rend. Semin. Mat. Univ. Padova 81 (1989), 107149.Google Scholar
Dixon, M. R., Sylow Theory, Formations and Fitting Classes in Locally Finite Groups (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
Dixon, M. R., Evans, M. J. and Smith, H., ‘Some countably recognizable classes of groups’, J. Group Theory 10 (2007), 641653.Google Scholar
de Giovanni, F. and Rainone, C., ‘Infinite groups with many generalized normal subgroups’, Internat. J. Group Theory 1 (2012), 3949.Google Scholar
Möhres, W., ‘Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind’, Arch. Math. (Basel) 54 (1990), 232235.Google Scholar
Neumann, B. H., ‘Groups with finite classes of conjugate subgroups’, Math. Z. 63 (1955), 7696.Google Scholar
Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups (Springer, Berlin, 1972).CrossRefGoogle Scholar