Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:21:38.444Z Has data issue: false hasContentIssue false

MAXIMAL SUBSETS OF PAIRWISE NONCOMMUTING ELEMENTS OF THREE-DIMENSIONAL GENERAL LINEAR GROUPS

Published online by Cambridge University Press:  08 June 2009

AZIZOLLAH AZAD*
Affiliation:
Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran (email: a-azad@sci.ui.ac.ir, a-azad@araku.ac.ir)
CHERYL E. PRAEGER
Affiliation:
School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia (email: praeger@maths.uwa.edu.au)
*
For correspondence; e-mail: a-azad@sci.ui.ac.ir,a-azad@araku.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a group. A subset N of G is a set of pairwise noncommuting elements if xy⁄=yx for any two distinct elements x and y in N. If ∣N∣≥∣M∣ for any other set of pairwise noncommuting elements M in G, then N is said to be a maximal subset of pairwise noncommuting elements. In this paper we determine the cardinality of a maximal subset of pairwise noncommuting elements in a three-dimensional general linear group. Moreover, we show how to modify a given maximal subset of pairwise noncommuting elements into another maximal subset of pairwise noncommuting elements that contains a given ‘generating element’ from each maximal torus.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Abdollahi, A., Akbari, A. and Maimani, H. R., ‘Non-commuting graph of a group’, J. Algbera 298 (2006), 468492.CrossRefGoogle Scholar
[2] Bertram, E. A., ‘Some applications of graph theory to finite groups’, Discrete Math. 44 (1983), 3143.CrossRefGoogle Scholar
[3] Brown, R., ‘Minimal covers of S n by Abelian subgroups and maximal subsets of pairwise noncommuting elements’, J. Combin. Theory Ser. A 49(2) (1988), 294307.CrossRefGoogle Scholar
[4] Chin, A. Y. M., ‘On non-commuting sets in an extraspecial p-group’, J. Group Theory 8 (2005), 189194.CrossRefGoogle Scholar
[5] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005 (http://www.gap-system.org).Google Scholar
[6] Humphreys, J. E., Linear Algebraic Groups (Springer, New York, 1975).CrossRefGoogle Scholar
[7] Huppert, B., Endliche Gruppen, I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[8] Mason, D. R., ‘On coverings of a finite group by abelian subgroups’, Math. Proc. Cambridge Philos. Soc. 83(2) (1978), 205209.CrossRefGoogle Scholar
[9] Neumann, B. H., ‘A problem of Paul Erdős on groups’, J. Aust. Math. Soc. Ser. A 21 (1976), 467472.CrossRefGoogle Scholar
[10] Pyber, L., ‘The number of pairwise non-commuting elements and the index of the centre in a finite group’, J. London Math. Soc. 35(2) (1987), 287295.CrossRefGoogle Scholar
[11] Serre, J. P., ‘Sur la dimension cohomologique des groups profinis’, Topology 3 (1965), 413420.CrossRefGoogle Scholar