Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T23:26:49.983Z Has data issue: false hasContentIssue false

MAXIMUM SIZE OF SUBSETS OF PAIRWISE NONCOMMUTING ELEMENTS IN FINITE METACYCLIC p-GROUPS

Published online by Cambridge University Press:  28 February 2012

S. FOULADI*
Affiliation:
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran (email: s-fouladi@araku.ac.ir)
R. ORFI
Affiliation:
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran (email: r-orfi@araku.ac.ir)
*
For correspondence; e-mail: s-fouladi@araku.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite group. A subset X of G is a set of pairwise noncommuting elements if any two distinct elements of X do not commute. In this paper we determine the maximum size of these subsets in any finite nonabelian metacyclic p-group for an odd prime p.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Abdollahi, A., Akbari, A. and Maimani, H. R., ‘Noncommuting graph of a group’, J. Algebra 298(2) (2006), 468492.CrossRefGoogle Scholar
[2]Azad, A. and Praeger, Cheryl E., ‘Maximal subsets of pairwise noncommuting elements of three-dimensional general linear groups’, Bull. Aust. Math. Soc. 80(1) (2009), 91104.CrossRefGoogle Scholar
[3]Berkovich, Y., Groups of Prime Power Order, Vol. 1 (Walter de Gruyter, Berlin, 2008).CrossRefGoogle Scholar
[4]Berkovich, Y. and Janko, Z., Groups of Prime Power Order, Vol. 3 (Walter de Gruyter, Berlin, 2011).Google Scholar
[5]Chin, A. M. Y., ‘On noncommuting sets in an extraspecial p-group’, J. Group Theory 8(2) (2005), 189194.CrossRefGoogle Scholar
[6]Erdős, P. and Straus, E. G., ‘How abelian is a finite group?’, Linear Multilinear Algebra 3(4) (1976), 307312.CrossRefGoogle Scholar
[7]Fouladi, S. and Orfi, R., ‘Maximal subsets of pairwise noncommuting elements of some p-groups of maximal class’, Bull. Aust. Math. Soc. 84(3) (2011), 447451.CrossRefGoogle Scholar
[8] The GAP Group, GAP – Groups, Algorithms, and Programming, version 4.4.10, 2007, (http://www.gap-system.org).Google Scholar
[9]Mason, D. R., ‘On coverings of a finite group by abelian subgroups’, Math. Proc. Cambridge Philos. Soc. 83(2) (1978), 205209.CrossRefGoogle Scholar
[10]Neumann, B. H., ‘A problem of Paul Erdős on groups’, J. Aust. Math. Soc. Ser. A 21(4) (1976), 467472.CrossRefGoogle Scholar
[11]Pyber, L., ‘The number of pairwise noncommuting elements and the index of the centre in a finite group’, J. Lond. Math. Soc. 35(2) (1987), 287295.CrossRefGoogle Scholar