No CrossRef data available.
Article contents
MIXING IT UP: NEW METHODS FOR FINITE MIXTURE MODELLING OF MULTI-SPECIES DATA IN ECOLOGY
Published online by Cambridge University Press: 12 November 2015
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
MSC classification
- Type
- Abstracts of Australasian PhD Theses
- Information
- Bulletin of the Australian Mathematical Society , Volume 93 , Issue 1 , February 2016 , pp. 167 - 168
- Copyright
- © 2015 Australian Mathematical Publishing Association Inc.
References
Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. and Warton, D. I., ‘Model-based approaches to unconstrained ordination’, Methods Ecol. Evol. 6 (2015), 399–411.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Tuning parameter selection for the adaptive lasso using ERIC’, J. Amer. Statist. Assoc. 110 (2015), 262–269.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Order selection in finite mixture models: complete or observed likelihood information criteria?’, Biometrika (2015), doi:10.1093/biomet/asv027.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Multi-species distribution modeling using penalized mixture of regressions’, Ann. Appl. Stat. 9(2) (2015), 866–882.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I., Foster, S. D. and Dunstan, P. K., ‘To mix or not to mix: comparing the predictive performance of mixture models versus separate species distribution models’, Ecology 94 (2013), 1913–1919.CrossRefGoogle ScholarPubMed
You have
Access