Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T14:57:11.995Z Has data issue: false hasContentIssue false

MONOTONE LINDELÖF PROPERTY AND LINEARLY ORDERED EXTENSIONS

Published online by Cambridge University Press:  05 March 2010

AI-JUN XU*
Affiliation:
Department of Applied Mathematics, Nanjing Forest University, Nanjing 210037, PR China (email: ajxu@njfu.edu.cn)
WEI-XUE SHI
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, PR China (email: wxshi@nju.edu.cn)
*
For correspondence; e-mail: ajxu@njfu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we explore the monotone Lindelöf property of two kinds of linearly ordered extensions of monotonically Lindelöf generalized ordered spaces. In addition, we construct nonseparable monotonically Lindelöf spaces using the Bernstein set, which generalizes Corollary 4 of Levy and Matveev [‘Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces’, Topology Appl.154 (2007), 2333–2343].

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

This work is supported by the NSFC, project 10971092.

References

[1]Bennett, H., Lutzer, D. and Matveev, M., ‘The monotone Lindelöf property and separability in ordered spaces’, Topology Appl. 151 (2005), 180186.CrossRefGoogle Scholar
[2]Engleking, R., General Topology (Sigma Series in Pure Mathematics, 6) (Heldermann, Berlin, 1989), revised.Google Scholar
[3]Levy, R. and Matveev, M., ‘Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces’, Topology Appl. 154 (2007), 23332343.CrossRefGoogle Scholar
[4]Levy, R. and Matveev, M., ‘The monotone Lindelöfness of countable spaces’, Comment. Math. Univ. Carolin. 49(1) (2008), 155161.Google Scholar
[5]Lutzer, D., ‘On generalized ordered spaces’, Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pp.Google Scholar
[6]Lutzer, D., ‘Ordered topological spaces’, in: Surveys in General Topology, (ed. Reed, G. M.) (Academic Press, New York, 1980), pp. 247296.CrossRefGoogle Scholar
[7]Matveev, M., A monotonically Lindelöf space which is not monotonically normal, Preprint.Google Scholar
[8]Miwa, T. and Kemoto, N., ‘Linearly ordered extensions of GO-spaces’, Topology Appl. 54 (1993), 133140.CrossRefGoogle Scholar