Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T05:26:26.391Z Has data issue: false hasContentIssue false

Nonlinear diffusion in a finite layer*

Published online by Cambridge University Press:  17 April 2009

J.-Y. Parlange
Affiliation:
School of Australian Environmental Studies, Griffith University, Brisbane, Queensland 4111, Australia.
D.A. Lockington
Affiliation:
School of Australian Environmental Studies, Griffith University, Brisbane, Queensland 4111, Australia.
R.D. Braddock
Affiliation:
School of Australian Environmental Studies, Griffith University, Brisbane, Queensland 4111, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Australian Mathematical Societyt Applied Mathematics Conference
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Anderson, N. and Arthurs, A.M., “Dual extremum principles for a nonlinear diffusion problem”, Quart. Appl. Math. 35 (1977/1978), 188190.CrossRefGoogle Scholar
[2]Braddock, R.D. and Parlange, J.-Y., “Some accurate numerical solutions of the soil-water diffusion equation”, Soil Sci. Soc. Amer. J. 44 (1980), 656658.CrossRefGoogle Scholar
[3]Braddock, R.D., Parlange, J.-Y., Lockington, D. and Doilibi, P., “Nonlinear diffusion with a barrier”, Numerical solutions of partial differential equations (North-Holland, Amsterdam, to appear).Google Scholar
[4]Braddock, R.D., Parlange, J.Y., and Lisle, I.G., “Properties of the sorptivity for exponential diffusivity and application to the measurement of the soil water diffusivity”, Soil Sci. Soc. Amer. J. 45 (1981), 705709.CrossRefGoogle Scholar
[5]Bruce, R.R. and Klute, A., “The measurement of soil moisture diffusivity”, Soil Sci. Soc. Amer. J. 20 (1956), 458462.CrossRefGoogle Scholar
[6]Brutsaert, W., “The concise formulation of diffusive sorption of water in a dry soil”, Water Resour. Res. 10 (1974), 11181124.Google Scholar
[7]Matano, C., “On the relation between the diffusion coefficients and concentration of solid materials (the nickel-copper system)”, Japan. J. Phys. 8 (1933), 109113.Google Scholar
[8]Parlange, Jean-Yves, “On solving the flow equation in unsaturated soils by optimization: horizontal infiltration”, Soil Sci. Soc. Amer. J. 39 (1975), 415418.CrossRefGoogle Scholar
[9]Parlange, J.-Y., “Comment”, Water Resour. Res. 11 (1975), 10401041.CrossRefGoogle Scholar
[10]Parlange, J.-Y., “Water transport in soils”, Ann. Rev. Fluid Mech. 12 (1980), 77102.CrossRefGoogle Scholar
[11]Parlange, J.-Y. and Braddock, R.D., “An application of Brutsaert's and optimization techniques to the nonlinear diffusion equation: the influence of tailing”, Soil Sci. 129 (1980), 145149.CrossRefGoogle Scholar
[12]Parlange, J.-Y. and Braddock, R.D., “A note on some similarity solutions of the diffusion equation”, Z. Angew. Math. Phys. 31 (1980), 653656.CrossRefGoogle Scholar
[13]Parlange, J.-Y., Braddock, R.D., and Chu, B.T., “First integrals of the diffusion equation: an extension of the Fujita solutions”, Soil Sci. Soc. Amer. J. 44 (1980), 908911.CrossRefGoogle Scholar
[14]Parlange, J.-Y., Braddock, R.D., and Lisle, I., “Third-order integral relation between sorptivity and soil water diffusivity using Brutsaert's technique”, Soil Sci. Soc. Amer. J. 44 (1980), 889891.CrossRefGoogle Scholar
[15]Parlange, J.-Y., Braddock, R.D., and Voss, G., “Two-dimensional similarity solutions of the nonlinear diffusion equation from optimization and first integrals”, Soil Sci. 131 (1981), 18.CrossRefGoogle Scholar
[16]Parlange, J.-Y., Braddock, R.D., Sander, G. and Stagnitti, F., “Three dimensional similarity solutions of the nonlinear diffusion equation from optimization and first integrals”, J. Austral. Math. Soc. Ser. B 23 (1982), 297309.CrossRefGoogle Scholar
[17]Pert, G.J., “A class of similar solutions of the non-linear diffusion equation”, J. Phys. Ser. A: Math. General 10 (1977), 583593.CrossRefGoogle Scholar
[18]Philip, J.R., “Flow in porous media”, Ann. Rev. Fluid Mech. 2 (1970), 177204.CrossRefGoogle Scholar
[19]Reichardt, K., Nielsen, D.R., and Biggar, J.W., “Scaling of horizontal infiltration into homogeneous soils”, Soil Sci. Soc. Amer. J. 36 (1972), 241245.CrossRefGoogle Scholar