Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:14:41.386Z Has data issue: false hasContentIssue false

A note on the theorem of Baturov

Published online by Cambridge University Press:  17 April 2009

María Muñoz
Affiliation:
Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, (Murcia), Spain, e-mail: maria.mg@upct.es
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

D.P. Baturov proved in ‘Subspaces of function spaces’ Vestnik Moskov University Series I (1987) that Lindelöf degree equals extent for subspaces of Cp(Χ) when Χ is a Lindelöf Σ-space. We prove that if the Lindelöf degree of the subspace is “big enough” the equality is true for a topological space Χ not necessarily Lindelöf Σ.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Arkhangel'skiĭ, A.V., ‘On some topological spaces that arise in functional analysis’, Russian Math. Surveys 31 (1976), 1430.CrossRefGoogle Scholar
[2]Arkhangel'skiĭ, A.V., Topological function spaces, Mathematics and its Applications (Soviet Series) 78 (Kluwer Academic Publishers Group, Dordrecht, 1989). Translated from the Russian by Hoksbergen, R.A.M..Google Scholar
[3]Arkhangel'skiĭ, A.V. and Buzyakova, R., ‘Addition theorems and D-spaces’, Comment. Math. Univ. Car. 43 (2002), 653663.Google Scholar
[4]Arkhangel'skiĭ, A.V., ‘D-spaces and finite unions’, Proc. Amer. Math. Soc. 132 (2004), 21632170.CrossRefGoogle Scholar
[5]Baturov, D.P., ‘Subspaces of function spaces’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1987), 6669.Google Scholar
[6]Borges, C.R. and Wehrly, A.C., ‘A study on D-spaces’, Topology Proc. 16 (1991), 715.Google Scholar
[7]Cascales, B. and Oncina, L., ‘Compactoid filters and USCO maps’, J. Math. Anal. Appl. 282 (2003), 826845.CrossRefGoogle Scholar
[8]Buzyakova, R., ‘Hereditarily D-property of function spaces over compacta’, Proc. Amer. Math. Soc. 132 (2004), 34333439.CrossRefGoogle Scholar
[9]Cascales, B., Muñoz, M., and Orihuela, J., ‘Index of K-determination of topological spaces’, (preprint).Google Scholar
[10]van Douwen, E.K. and Pfeffer, W., ‘Some properties of the Sorgenfrey line and related spaces’, Pacific J. Math. 81 (1979), 371377.CrossRefGoogle Scholar
[11]Engelking, R., General topology (PWN-Polish Scientific Publishers, Warsaw, 1977). Translated from the Polish by the author, Matematyczne, Monografie, Tom 60. [Mathematical Monographs, Vol. 60].Google Scholar
[12]Fleissner, W. and Stanley, A., ‘D-spaces’, Topology Appl. 114 (2001), 261271.CrossRefGoogle Scholar
[13]Gruenhage, G., ‘A note on D-spaces’, Topology Appl. 153 (2006), 22292240.CrossRefGoogle Scholar
[14]Hödel, R., ‘On a Theorem of Arkhangel'skiĭ concerning Lindelöf p-spaces’, Canad. J. Math. 27 (1975), 459468.CrossRefGoogle Scholar
[15]Hödel, R., ‘Cardinal Functions I’, in Handbook of Set-Theoretic Topology (Elsevier Science Publishers, 1984), pp. 161.Google Scholar
[16]Kelley, J.L., General topology (Springer-Verlag, New York, 1975). Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics 27.Google Scholar
[17]Nagami, K., ‘Σ-spaces’, Fund. Math. 65 (1969), 169192.CrossRefGoogle Scholar
[18]Rogers, A. and Jayne, E., Analytic sets (Academic Press, London, 1980).Google Scholar