Article contents
NOTES ON $K$-TOPOLOGICAL GROUPS AND HOMEOMORPHISMS OF TOPOLOGICAL GROUPS
Published online by Cambridge University Press: 30 August 2012
Abstract
In this paper, it is shown that there exists a connected topological group which is not homeomorphic to any $\omega $-narrow topological group, and also that there exists a zero-dimensional topological group $G$ with neutral element $e$ such that the subspace $X = G\setminus \{e\}$ is not homeomorphic to any topological group. These two results give negative answers to two open problems in Arhangel’skii and Tkachenko [Topological Groups and Related Structures (Atlantis Press, Amsterdam, 2008)]. We show that if a compact topological group is a $K$-space, then it is metrisable. This result gives an affirmative answer to a question posed by Malykhin and Tironi [‘Weakly Fréchet–Urysohn and Pytkeev spaces’, Topology Appl. 104 (2000), 181–190] in the category of topological groups. We also prove that a regular $K$-space $X$ is a weakly Fréchet–Urysohn space if and only if $X$has countable tightness.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © 2012 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by