1 Introduction
An arithmetic function $f:\mathbb {N}\to \mathbb {C}$ is multiplicative if $f(1)=1$ and $f(mn)=f(m)f(n)$ whenever m and n are relatively prime. Let $\mathcal {M}$ denote the set of complex-valued multiplicative functions.
A set $E\subseteq \mathbb {N}$ is an additive uniqueness set of a set of arithmetic functions $\mathcal {F}$ if there is exactly one element $f\in \mathcal {F}$ that satisfies
For example, $\mathbb {N}$ and $\{1\}\cup 2\mathbb {N}$ are trivially additive uniqueness sets of $\mathcal {M}$ .
This concept was introduced by Spiro [Reference Spiro13] in 1992. She proved that the set of primes is an additive uniqueness set of $\mathcal {M}_0=\{f\in \mathcal {M} \mid f(p_0)\neq 0 \ \text {for some prime}\ p_0\}$ and asked whether other interesting sets were additive uniqueness sets for multiplicative functions. Spiro’s work has been extended in many directions.
Let $k\geq 2$ be a fixed integer. If there is only one function $f\in \mathcal {F}$ which satisfies ${f(x_1+x_2+\cdots +x_k)=f(x_1)+f(x_2)+\cdots +f(x_k)}$ for arbitrary $x_i\in E$ , $i\in \{1,2,\ldots ,k\}$ , then E is called a k-additive uniqueness set of $\mathcal {F}$ .
In 2010, Fang [Reference Fang5] proved that the set of primes is a 3-additive uniqueness set of $\mathcal {M}_0$ . In 2013, Dubickas and ${\breve{\mathrm{S}}}$ arka [Reference Dubickas and Šarka4] generalised Fang’s result to sums of arbitrary primes.
In 1999, Chung and Phong [Reference Chung and Phong3] showed that the set of positive triangular numbers $T_n=\tfrac 12n(n+1)$ , $n\in \mathbb {N}$ , and the set of positive tetrahedral numbers ${\textit {Te}}_n=\tfrac 16n(n+1)(n+2)$ , $n\in \mathbb {N}$ , were new additive uniqueness sets for $\mathcal {M}$ . Park [Reference Park11] extended their work to sums of k triangular numbers, $k\geq 3$ .
In 2018, Kim et al. [Reference Kim, Kim, Lee and Park7] proved that the set of generalised pentagonal numbers $P_n=\tfrac 12n(3n-1)$ , $n\in \mathbb {Z}$ , is an additive uniqueness set for $\mathcal {M}$ . Recently, they showed that the set of positive pentagonal numbers and the set of positive hexagonal numbers $H_n=n(2n-1)$ , $n\in \mathbb {N}$ , are new additive uniqueness sets for the collection of multiplicative functions [Reference Kim, Kim, Lee and Park8]. They also conjectured that among the sets of s-gonal numbers, only the sets of triangular, pentagonal and hexagonal numbers are additive uniqueness sets for $\mathcal {M}$ .
Park [Reference Park9] proved that the set of nonzero squares is a k-additive uniqueness set of $\mathcal {M}$ for every $k\geq 3$ , although it is not a 2-additive uniqueness set [Reference Chung2]. In 2020, he showed that $\{p-1 \mid p \ \text { is a prime}\}$ is an additive uniqueness set for $\mathcal {M}$ [Reference Park10].
Recently, the author [Reference Hasanalizade6] proved that the set of practical numbers is a k-additive uniqueness set of $\mathcal {M}$ for every $k\geq 2$ .
A set $S\subseteq \mathbb {N}$ is called an additive basis (respectively, an asymptotic additive basis) of order j for $\mathbb {N}$ if there is a constant j such that every natural number (respectively, every sufficiently large natural number) can be written as a sum of at most j members of S. For example, the classical Lagrange theorem asserts that the set of squares is an additive basis of order $4$ , and Gauss (1796) proved that the triangular numbers form an additive basis of order $3$ . The famous binary Goldbach conjecture is equivalent to the assertion that the set of primes is an asymptotic additive basis of order $3$ .
A set $S\subseteq \mathbb {N}$ is called k-automatic if there exists a deterministic finite automaton M that recognises the language of base k representations of elements of S [Reference Allouche and Shallit1].
A number is odious if the number of ones in its base 2 representation is odd. The set of odious numbers is 2-automatic. Let $\mathcal {O}$ be the set of odious numbers, that is,
Using automata theory, Rajasekaran et al. [Reference Rajasekaran, Shallit and Smith12] proved the following result.
Theorem 1.1 (Rajasekaran et al., 2020).
A natural number is the sum of exactly two odious numbers if and only if it is not of the form $2\cdot 4^i-1$ for $i\ge 0$ .
The next theorem, also from Rajasekaran et al. [Reference Rajasekaran, Shallit and Smith12], shows that the set of odious numbers is an asymptotic additive basis of order 3.
Theorem 1.2 (Rajasekaran et al., 2020).
Every natural number $N>15$ is the sum of three distinct odious numbers.
We prove the following theorem showing that the set of odious numbers is an additive uniqueness set of $\mathcal {M}$ .
Theorem 1.3. Fix $k\geq 2$ . The set $\mathcal {O}$ of odious numbers is a k-additive uniqueness set of $\mathcal {M}$ : if a multiplicative function f satisfies
for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$ , then f is the identity function.
It would be interesting to see whether a result similar to Theorem 1.3 holds for other classes of automatic sets.
2 Proof of Theorem 1.3
The proof consists of four parts.
Case I: $k=2$ . It is easy to show by induction that $f(2^k)=2^k$ for all $k\in \mathbb {N}$ , because $f(2)=f(1+1)=2$ and $f(2^{k+1})=f(2\cdot 2^k)=2f(2^k)$ . Suppose that N is an integer such that $f(n)=n$ for all $n\le N$ . We show that $f(N+1)=N+1$ . If $N+1\ne 2\cdot 4^i-1$ for $i\ge 1$ , then by Theorem 1.1 there are two distinct odious numbers $x,y$ such that $N+1=x+y$ and $x,y\le N$ . Thus, $f(N+1)=f(x)+f(y)$ so that $f(N+1)=N+1$ . If $N+1=2\cdot 4^i-1$ for some $i\ge 1$ , then
since $2\cdot 4^i-1=2^{2i+1}-1=\underbrace {11\ldots 1}_{2i+1}{}_2\in \mathcal {O}$ . Therefore, $f(N+1)=N+1$ . Note that in this case we do not use the multiplicativity of f.
Case II: $k=3$ . Clearly, $f(3)=3$ and $f(10)=f(2)f(5)=f(2)[2f(2)+1]$ . On the other hand, $f(10)=f(4+4+2)=2f(4)+f(2)$ and $f(4)=f(2+1+1)=f(2)+2$ . Hence, $f^2(2)-f(2)-2=0$ with two solutions $f(2)=-1$ and $f(2)=2$ . The first solution yields $f(4)=1$ , which leads to the contradiction
Therefore, we conclude that $f(2)=2$ . From this, it is easy to check that $f(n)=n$ for $1\leq n\leq 15$ . Assume that $f(n)=n$ for all $n\leq N$ . We have $N\geq 15$ . We show that $f(N+1)=N+1$ . By Theorem 1.2, there exist distinct odious numbers $x,y$ and z such that $N+1=x+y+z$ where $x,y,z<N$ . Hence, the assumption $f(n)=n$ for all $n\leq N$ yields $f(N+1)=f(x+y+z)=f(x)+f(y)+f(z)=x+y+z=N+1$ .
Case III: $k=4$ . By Theorem 1.2 and straightforward calculations, every integer $\ge 4$ can be written as a sum of four odious numbers.
Note that $f(4)=4$ , $f(6)=f(2)f(3)=f(2+2+1+1)=2f(2)+2$ and $f(12)=4f(3)=f(4+4+2+2)=8+2f(2)$ . For convenience, let $a=f(2)$ , $b=f(3)$ . This gives the system of equations
We obtain the two solutions $f(2)=-2$ , $f(3)=1$ and $f(2)=2$ , $f(3)=3$ . The first solution yields $f(5)=f(2+1+1+1)=1$ , which leads to the contradiction
Thus, we can conclude that $f(2)=2$ , $f(3)=3$ . So, $f(n)=n$ for $n\leq 4$ , and f must be the identity function by induction.
Case IV: $k\geq 5$ . In this case we follow closely Park’s argument in [Reference Park11]. It is clear that the sum of k odious numbers can represent k but cannot represent any number from 1 to $k-1$ . Since sums of four odious numbers represent all integers $\geq 4$ as in Case III, the sum
where $x,y,z,w\in \mathcal {O}$ , can represent all integers $\geq k$ .
Let $k\geq 5$ . Note that
Let $a=f(2)$ , $b=f(4)$ , $c=f(7)$ . The above equalities give rise to the system of equations
The solutions are
Observe that $f(k+1)=k-1+f(2)$ , $f(k+4)=k-2+f(4)+f(2)$ and $f(k+6)= k-4+f(4)+3f(2)$ .
If $\text {gcd}(4,k+1)=1$ , the equalities
exclude the first set of solutions $f(2)=\tfrac 14$ , $f(4)=\tfrac 12$ , $f(7)=0$ .
If $4\nmid k+1$ but $2 \mid k+1$ , then $\text {gcd}(4,k+4)=1$ , and the equalities
exclude the first set of solutions.
Finally, if $4 \mid k+1$ , then $\text {gcd}(4,k+6)=1$ , and we consider
which excludes the first set of solutions.
Now consider the second solution set $f(2)=f(4)=f(7)=1$ . Arrange the odious numbers into an increasing sequence, and let $x_n$ denote the nth term. Then, $f(x_1)=f(x_2)=f(x_3)=f(x_4)=1$ . As seen in Case III, every $x_n$ with $n\geq 3$ can be written as a sum of four odious numbers. From the equality
we infer that $f(x_n)=1$ for all $n\geq 5$ inductively. But for sufficiently large n, $x_n$ can be represented as a sum of k odious numbers by (2.1), so $f(x_n)=k$ , which is a contradiction.
Hence, we conclude that $f(2)=2$ , $f(4)=4$ and $f(7)=7$ . Moreover, (2.2) yields $f(x_n)=x_n$ for every $n\geq 1$ .
If N is a sum of k odious numbers, then $f(N)=N$ . Otherwise, choose an integer $M\geq k$ such that $\text {gcd}(M,N)=1$ . Then, M and $MN$ can be represented as sums of k odious numbers by (2.1). By the multiplicativity of f,
Therefore, $f(N)=N$ , and this completes the proof.
Acknowledgement
The author would like to thank the anonymous referee for helpful suggestions.