1 Introduction
Let $\mathcal {H}$ be the class of all analytic functions in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$ . Let $\mathcal {B}$ be the subclass of $\mathcal {H}$ consisting of all functions f in $\mathcal {H}$ with $|f(z)|<1$ for all $z\in \mathbb {D}$ , $\mathcal {B}_0$ be the subclass of $\mathcal {B}$ with $f(0)=0$ and $\mathcal {A}$ be the subclass of $\mathcal {H}$ consisting of all functions f normalised by $f(0)=f'(0)-1=0$ with the Taylor series expansion
Further, let $\mathcal {S}$ be the subclass of $\mathcal {A}$ that are univalent (that is, one-to-one) in $\mathbb {D}$ . A function $f\in \mathcal {A}$ is called starlike (respectively, convex) if $f(\mathbb {D})$ is a starlike domain (respectively, a convex domain) with respect to the origin. The set of all starlike functions and convex functions in $\mathcal {S}$ are denoted by $\mathcal {S}^*$ and $\mathcal {C}$ , respectively. It is well known that a function f in $\mathcal {A}$ is starlike (respectively, convex) if and only if $\mathrm {Re\,} zf'(z)/f(z)>0$ (respectively, $\mathrm {Re\,} (1+zf"(z)/f'(z))>0$ ) for $z\in \mathbb {D}$ . For further information about these classes, we refer to [Reference Duren5, Reference Goodman7].
A function $f\in \mathcal {A}$ is said to be close-to-convex if the complement of the image-domain $f(\mathbb {D})$ in $\mathbb {C}$ is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays) and the class of all close-to-convex functions is denoted by $\mathcal {K}$ . This class was introduced by Kaplan [Reference Kaplan10]. A function $f\in \mathcal {A}$ is close-to-convex if and only if there exists a starlike function $g\in \mathcal {S}^*$ and a real number $\alpha \in (-\pi /2,\pi /2)$ such that (see [Reference Duren5, Reference Kaplan10])
In 1968, Singh [Reference Singh16] introduced and studied the class $\mathcal {S}_u^*$ consisting of functions f in $\mathcal {A}$ such that
It is easy to see that every function in $\mathcal {S}_u^*$ also belongs to $\mathcal {S}^*$ . Singh [Reference Singh16] obtained the distortion theorem, coefficient estimate and radius of convexity for the class $\mathcal {S}_u^*$ . Recently, Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] introduced a close-to-convex analogue of the class $\mathcal {S}_u^*$ denoted by $\mathcal {K}_u$ . A function f in $\mathcal {A}$ belongs to $\mathcal {K}_u$ if there exists a starlike function $g\in \mathcal {S}^*$ such that
Clearly, every function in $\mathcal {K}_u$ is close-to-convex.
It is well known that if $f\in \mathcal {S}$ is of the form (1.1), then $|a_n|\le n$ for all $n\geq 2$ , and equality holds for the rotations of the Koebe function $k(z)=z/(1- z)^2$ . Singh [Reference Singh16] proved that if $f\in \mathcal {S}_u^*$ , then $|a_n|\le 1/(n-1)$ for all $~n\geq 2$ , and this inequality is sharp. In 2020, Allu $et~al.$ [Reference Allu, Sokól and Thomas1] studied coefficient bounds for the functions $f(z)$ of the form (1.1) in the class $\mathcal {K}_{u}$ and obtained the sharp bounds $|a_2|\le 3/2$ and $|a_3|\leq 5/3$ and proposed a conjecture that $|a_n|\le (2n-1)/n$ for $n\ge 4$ .
The Fekete–Szegö problem is to find the maximum value of the coefficient functional
when f of the form (1.1) varies over a class of functions $\mathcal {F}$ . In 1933, Fekete–Szegö [Reference Fekete and Szegö6] used the Löwner differential method to prove that
In 1987, Koepf [Reference Koepf12] obtained the sharp bound of $\Phi _\mu (f)$ for any $\mu \in \mathbb {R}$ for the class $\mathcal {K}$ :
The Fekete–Szegö problem has been studied for different subclasses of $\mathcal {S}$ (see [Reference Kanas and Lecko9, Reference Koepf13–Reference London15, Reference Singh and Singh17]). Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] considered the class $\mathcal {K}_{u}$ and obtained an estimate of the Fekete–Szegö functional $|a_3-\mu a_2^2|$ with $\mu \in \mathbb {R}$ . However, they were only able to show sharpness when $\mu \leq 0,~2/3\leq \mu \leq 1~\text {and}~\mu \geq 10/9$ .
Let $\mathcal {LU}$ denote the subclass of $\mathcal {H}$ consisting of all locally univalent functions in $\mathbb {D}$ , that is, $\mathcal {LU}:=\{f\in \mathcal {H}:f'(z)\ne 0\text { for all }z\in \mathbb {D}\}$ . For a locally univalent function $f\in \mathcal {LU}$ , the pre-Schwarzian derivative is defined by
and the pre-Schwarzian norm (the hyperbolic sup-norm) is defined by
This norm has significant meaning in the theory of Teichmüller spaces. For a univalent function f, it is well known that $\|P_f\|\leq 6$ and the estimate is sharp. However, if $\|P_f\|\leq 1$ , then f is univalent in $\mathbb {D}$ (see [Reference Becker2, Reference Becker and Pommerenke3]). In 1976, Yamashita [Reference Yamashita18] proved that $\|P_f \|$ is finite if and only if f is uniformly locally univalent in $\mathbb {D}$ . Moreover, if $\|P_f\|<2$ , then f is bounded in $\mathbb {D}$ (see [Reference Kim and Sugawa11]). We will obtain results related to the pre-Schwarzian norm for functions $f\in \mathcal {K}_u$ .
We first prove the conjecture $|a_n|\le (2n-1)/n$ for $n\ge 2$ for functions in $\mathcal {K}_u$ as proposed by Allu $et~ al.$ [Reference Allu, Sokól and Thomas1]. We next obtain the sharp estimate of the Fekete–Szegö functional $\Phi _\mu (f)$ for the class $\mathcal {K}_u$ for any $\mu \in \mathbb {R}$ . Finally, we obtain estimates of the pre-Schwarzian norm for functions in $\mathcal {K}_u$ .
2 Main results
Before stating our main results, we will discuss some preliminaries which will help us to prove our results. The first lemma is part of a result proved by Choi $et~al.$ [Reference Choi, Kim and Sugawa4].
Lemma 2.1. For $A, B\in \mathbb {C}$ and $K, L, M\in \mathbb {R}$ , let
Further consider the following four conditions involving $A, B, K, L, M$ :
-
(A1) $|A|\geq \max \bigg \{|K|\sqrt {1-\dfrac {M^2}{KL}},|M|-|K|\bigg \}$ ;
-
(A2) $|K|+|M|\leq |A| <|K|\sqrt {1-\dfrac {M^2}{KL}}$ ;
-
(B1) $|B|\geq \max \bigg \{|L|\sqrt {1-\dfrac {M^2}{KL}},|M|-|L|\bigg \}$ ;
-
(B2) $|L|+|M|\leq |B| <|L|\sqrt {1-\dfrac {M^2}{KL}}$ .
If $KL\geq 0$ and $D=(|K|-|A|)(|L|-|B|)-M^2$ , then
If $KL<0$ , then $\Omega (A, B, K, L, M)=|A|+|B|+\max \{0,R\},$ where
For two functions f and g in $\mathcal {H}$ , we say that $f(z)$ is majorised by $g(z)$ if $|f(z)|\leq |g(z)|$ for all $z\in \mathbb {D}$ or equivalently, if there exists $\omega \in \mathcal {B}$ such that ${f(z)=\omega (z)g(z)}$ . Let $f(z)=\sum _{n=0}^\infty a_nz^n$ and $F(z)=\sum _{n=0}^\infty A_nz^n$ be two power series convergent in some disk $E_R=\{z:|z|<R,~R>0\}$ . We say that $f(z)$ is dominated by $F(z)$ and we write $f(z)\ll F(z)$ if for any integer $n\geq 0$ , $|a_n|\leq |A_n|.$
Lemma 2.2 [Reference Hallenbeck and Macgregor8, Theorem 6.7].
If $f(z)=\sum _{n=1}^\infty a_nz^n$ , $z\in \mathbb {D}$ , is majorised by g and $g\in \mathcal {S}^*$ , then $|a_n|\le n$ for all $n\ge 1$ , that is, $f(z)\ll k(z)$ , where $k(z)=z/(1-z)^2$ is the Koebe function.
Our first result confirms the conjecture of Allu $et~al.$ in [Reference Allu, Sokól and Thomas1].
Theorem 2.3. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then,
Moreover, the estimate is sharp.
Proof. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then there exists a starlike function $g\in \mathcal {S}^*$ such that
Further, there exists a function $\omega (z)\in \mathcal {B}_{0}$ such that
that is,
for some $\omega _1(z)\in \mathcal {B}$ . Since, $g(z)\omega _1(z)$ is majorised by $g(z)$ and $g\in \mathcal {S}^*$ , by Lemma 2.2, the function $g(z)\omega _1(z)$ is dominated by $k(z)$ , that is, $g(z)\omega _1(z)\ll k(z)$ . Thus, from (2.1),
and consequently,
The estimate is sharp for the function $f_1\in \mathcal {K}_{u}$ given by
For functions in $\mathcal {K}_{u}$ , Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] obtained an estimate of the Fekete–Szegö functional $|a_3-\mu a_2^2|$ with $\mu \in \mathbb {R}$ . The result is sharp only when $\mu \leq 0,~2/3\leq \mu \leq ~1~\text {and}~\mu \geq 10/9$ . In the next theorem, we will give the sharp bounds of $|a_3-\mu a_2^2|$ for all values of $\mu \in \mathbb {R}$ . Our proof is completely different from that in [Reference Allu, Sokól and Thomas1]. Our main tool to get the sharp bound is Lemma 2.1.
Theorem 2.4. Let $f\in \mathcal {K}_{u}$ be given by (1.1). Then for every $\mu \in \mathbb {R}$ ,
Moreover, all the inequalities are sharp.
Proof. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then there exists a starlike function $g(z)=z+\sum _{n=2}^{\infty }b_nz^n$ in $\mathcal {S}^* $ such that
Thus, there exists $\omega (z)=\sum _{n=1}^{\infty }c_nz^n$ in $\mathcal {B}_0$ such that
From (2.2), comparing the coefficients of $z^2$ and $z^3$ on both sides,
Since $g\in \mathcal {S}^*$ , it follows that there exists another $\rho \in \mathcal {B}_0$ of the form $\rho (z)=\sum _{n=1}^{\infty }d_nz^n$ such that
On comparing the coefficients of $z^2$ and $z^3$ on both sides,
Therefore, for any $\mu \in \mathbb {R}$ ,
where
Thus,
Now, we have to find the maximum value of $|a_3-\mu a_2^2|$ when $|c_1|\leq 1,~ |d_1|\leq 1$ . To do this, we will use Lemma 2.1 and consider the following five cases.
Case 1: Let $\mu \leq 0$ . A simple calculation shows that
Therefore, from Lemma 2.1,
The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z$ and $\rho (z)=z$ , that is,
Case 2: Let $0\leq \mu \leq 2/3$ . A simple calculation shows that
Thus, from Lemma 2.1,
where R can be obtained from Lemma 2.1. For $0\leq \mu \leq \tfrac 23$ ,
and
which is true for all $\mu \in [0,~2/3]$ . Thus, the condition (A1) of Lemma 2.1 is satisfied.
Again, for $0\leq \mu \leq 2/3$ ,
and
which is not true for any $\mu \in [0,~2/3]$ . Thus, the condition (B1) of Lemma 2.1 is not satisfied. Further, for $0\leq \mu \leq 2/3$ ,
and so, the condition (B2) of Lemma 2.1 is not satisfied.
Therefore, by Lemma 2.1,
and consequently, from (2.6),
The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with
where
that is,
Case 3: Let $2/3\leq \mu \leq 1$ . It is easy to show that $KL= -\tfrac 14\mu (1-\mu )<0$ . So, from Lemma 2.1,
where R can be obtained from Lemma 2.1. Proceeding as in Case 2, we can verify that the condition (A1) holds but (B1) and (B2) of Lemma 2.1 do not hold. Therefore,
and consequently, from (2.7),
The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z^2$ and $\rho (z)=z^2,$ that is,
Case 4: Let $1\leq \mu \leq 10/9$ . A simple calculation shows that
Thus, from Lemma 2.1,
The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with
where
that is,
and
Case 5: Let $\mu \geq 10/9$ . A simple calculation shows that
Thus, from Lemma 2.1,
The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z$ and $\rho (z)=z$ , that is,
Finally, we establish a result related to the pre-Schwarzian norm for functions in $\mathcal {K}_{u}$ . We first note that a function f in $\mathcal {A}$ belongs to $\mathcal {K}_{u}$ if there exists a function $g\in \mathcal {S}^*$ such that $|zf'(z)/g(z)-1|<1.$ In other words, if there exists a convex function $h\in \mathcal {C}$ with $g(z)=zh'(z)$ such that
Theorem 2.5. Let $f\in \mathcal {K}_{u}$ and $h\in \mathcal {C}$ be the associated convex function. Then,
and the estimate is sharp. Further, $\|P_f\|\le 6$ .
Proof. Let $f\in \mathcal {K}_{u}$ and $h\in \mathcal {C}$ be the associated convex function such that
Then there exists a function $\omega (z)\in \mathcal {B}_{0}$ such that
Taking the logarithmic derivative on both sides,
and so,
Thus,
Since $\omega (z)\in \mathcal {B}_0$ , by the Schwarz–Pick lemma,
Therefore,
The above inequality is sharp for the functions
It is well known that $\|P_h\|\le 4$ for $f\in \mathcal {C}$ (see [Reference Yamashita19]), and so $\|P_f\|\le 6$ .