Article contents
ON DYNAMIC MONOPOLIES OF GRAPHS WITH PROBABILISTIC THRESHOLDS
Published online by Cambridge University Press: 09 September 2014
Abstract
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a graph and ${{\tau }}$ be an assignment of nonnegative thresholds to the vertices of $G$. A subset of vertices, $D$, is an irreversible dynamic monopoly of $(G, \tau )$ if the vertices of $G$ can be partitioned into subsets $D_0, D_1, \ldots, D_k$ such that $D_0=D$ and, for all $i$ with $0 \leq i \leq k-1$, each vertex $v$ in $D_{i+1}$ has at least $\tau (v)$ neighbours in the union of $D_0, D_1, \ldots, D_i$. Dynamic monopolies model the spread of influence or propagation of opinion in social networks, where the graph $G$ represents the underlying network. The smallest cardinality of any dynamic monopoly of $(G,\tau )$ is denoted by $\mathrm{dyn}_{\tau }(G)$. In this paper we assume that the threshold of each vertex $v$ of the network is a random variable $X_v$ such that $0\leq X_v \leq \deg _G(v)+1$. We obtain sharp bounds on the expectation and the concentration of $\mathrm{dyn}_{\tau }(G)$ around its mean value. We also obtain some lower bounds for the size of dynamic monopolies in terms of the order of graph and expectation of the thresholds.
Keywords
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 90 , Issue 3 , December 2014 , pp. 363 - 375
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by