Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T18:56:42.504Z Has data issue: false hasContentIssue false

On extensions of nilpotent torsion rings by semisimple rings

Published online by Cambridge University Press:  17 April 2009

Ismail A. Amin
Affiliation:
Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt.
Ferenc A. Szász
Affiliation:
Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A class of rings in which each member is the extension of a nilpotent torsion ring by a semisimple semiartinian ring is presented.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Faith, Carl, Algebra II: ring theory (Die Grundlehren der mathematischen Wissenschaften, 191. Springer-Verlag, Berlin, Heidelberg, New York, 1976).Google Scholar
[2]Golan, Jonathan S., Localization of noncommutative rings (Pure and Applied Mathematics, 30. Marcel Dekker, New York, 1975).Google Scholar
[3]Golan, Jonathan S., Decomposition and dimension in module categories (Lecture Notes in Pure and Applied Mathematics, 33. Marcel Dekker, New York, Basel, 1977).Google Scholar
[4]Goldman, Oscar, “Rings and modules of quotients”, J. Algebra 13 (1969), 1047.CrossRefGoogle Scholar
[5]Goldman, Oscar, “Elements of noncommutative arithmetic I”, J. Algebra 35 (1975), 308341.CrossRefGoogle Scholar
[6]Jacobson, Nathan, Structure of rings, revised edition (American Mathematical Society Colloquium Publication, 37. American Mathematical Society, Providence, Rhode Island, 1964).Google Scholar
[7]Kertész, Andor, Vorlesungen Über artinsche Ringe (Akadémiai Kiadó, Budapest, 1968).Google Scholar
[8]Kertész, A., “Noethersche Ringe, die artinsch sind”, Acta Sci. Math. (Szeged) 31 (1970), 219221.Google Scholar
[9]Stenström, Bo, Rings of quotients. An introduction to methods of ring theory (Die Grundlehren der mathematischen Wissenschaften, 217. Springer-Verlag, Berlin, Heidelberg, New York, 1975).Google Scholar
[10]Szász, F., “Über Ringe mit Minimalbedingung für Hauptrechtsideale. I”, Publ. Math. Debrecen 7 (1960), 5464.CrossRefGoogle Scholar
[11]Szász, F., “Über Ringe mit Minimalbedingung für Hauptrechtsideale. II”, Acta Math. Acad. Sci. Hungar. 12 (1961), 417439.CrossRefGoogle Scholar
[12]Szász, F., “Über Ringe mit Minimalbedingung für Hauptrechtsideale. III”, Acta Math. Acad. Sci. Hungar. 14 (1963), 447461.CrossRefGoogle Scholar
[13]Szász, Ferenc, Radikale der Ringe (VEB Deutscher Verlag der Wissenschaften, Berlin, 1975).Google Scholar