Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T01:36:41.706Z Has data issue: false hasContentIssue false

On finite products of totally permutable groups

Published online by Cambridge University Press:  17 April 2009

A. Ballester-Bolinches
Affiliation:
Departament d'AlgebraUniversitat de ValènciaC/- Doctor Moliner, 5046100 Burjassot (València)Spain
M.C. Pedraza-Aguilera
Affiliation:
Departament d'AlgebraUniversitat de ValènciaC/- Doctor Moliner, 5046100 Burjassot (València)Spain
M.D. Pérez-Ramos
Affiliation:
Departament d'AlgebraUniversitat de ValènciaC/- Doctor Moliner, 5046100 Burjassot (València)Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper the structure of finite groups which are the product of two totally permutable subgroups is studied. In fact we can obtain the -residual, where is a formation, -projectors and -normalisers, where is a saturated formation, of the group from the corresponding subgroups of the factor subgroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Ballester-Bolinches, A. and Pérez-Ramos, M.D., ‘A Question of R. Maier concerning formations’, (preprint).Google Scholar
[2]Ballester-Bolinches, A. and Pérez-Ramos, M.D., ‘On -subnormal subgroups and Frattini-like subgroups of a finite group’, Glasgow Math. J. 36 (1994), 241247.CrossRefGoogle Scholar
[3]Doerk, K. and Hawkes, T., Finite soluble groups (Walter De Gruyter, Berlin, New York, 1992).CrossRefGoogle Scholar
[4]Maier, R., ‘A completeness property of certain formations’, Bull. London. Math. Soc. 24 (1992), 540544.CrossRefGoogle Scholar