Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T09:49:28.639Z Has data issue: false hasContentIssue false

ON LÜROTH EXPANSIONS IN WHICH THE LARGEST DIGIT GROWS WITH SLOWLY INCREASING SPEED

Published online by Cambridge University Press:  23 June 2022

MENGJIE ZHANG*
Affiliation:
School of Mathematics and Statistics, Henan University of Science and Technology, 471023 Luoyang, PR China
WEILIANG WANG
Affiliation:
School of Finance and Mathematics, West Anhui University, 237012 Luan, PR China e-mail: weiliang_wang@hust.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Let $0\leq \alpha \leq \infty $ , $0\leq a\leq b\leq \infty $ and $\psi $ be a positive function defined on $(0,\infty )$ . This paper is concerned with the growth of $L_{n}(x)$ , the largest digit of the first n terms in the Lüroth expansion of $x\in (0,1]$ . Under some suitable assumptions on the function $\psi $ , we completely determine the Hausdorff dimensions of the sets

$$\begin{align*}E_\psi(\alpha)=\bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=\alpha\bigg\} \end{align*}$$

and

$$\begin{align*}E_\psi(a,b)=\bigg\{x\in(0,1]: \liminf\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=a, \limsup\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=b\bigg\}. \end{align*}$$

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

It is well known that every $x\in (0,1]$ admits an infinite Lüroth expansion of the form

(1.1) $$ \begin{align} x=\frac{1}{d_1(x)}+\sum\limits_{n\geq2}\frac{1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}, \end{align} $$

where $d_n(x)\in \mathbb {N}$ for all $n\geq 1$ , which we write as $x=[d_1(x),d_2(x),\ldots ]$ . Lüroth [Reference Lüroth12] showed that the Lüroth expansion can be induced by the Lüroth map $T:[0,1]\rightarrow [0,1]$ defined by

$$\begin{align*}T(x)= \begin{cases} 0 & \text{if }x=0, \\ \bigg\lfloor\dfrac{1}{x}\bigg\rfloor\bigg(\bigg(\bigg\lfloor\dfrac{1}{x}\bigg\rfloor+1\bigg)x-1\bigg) & \text{if }x\in(0,1]. \end{cases} \end{align*}$$

The digits $d_n:=d_n(x)$ in (1.1) are defined by

$$\begin{align*}d_1(x)=\bigg\lfloor\frac{1}{x}\bigg\rfloor+1 \quad\text{and}\quad d_n(x)=d_1(T^{n-1}(x)) \quad\text{for all } n\in\mathbb{N}, \end{align*}$$

where $\lfloor \cdot \rfloor $ denotes the integer part of some real number and $T^n$ stands for the nth iterate of $T\ (T^0=\mathrm {Id}_{(0,1]})$ .

Clearly, the above algorithm gives $d_n\geq 2$ for each $n\geq 1$ . Conversely, it is shown in [Reference Galambos6] that any sequence of integers $\{d_n\}_{n\geq 1}$ with $d_n\geq 2$ for each $n\geq 1$ must be the Lüroth expansion of some $x\in (0,1]$ . The Lüroth expansion has been studied extensively in the representation theory of real numbers, probability theory and dynamical systems (see [Reference Barreira and Iommi1, Reference Cao, Wu and Zhang2, Reference Fan, Liao, Ma and Wang5, Reference Hutchinson7] and the monograph of Dajani and Kraaikamp [Reference Dajani and Kraaikamp3]).

Given $x\in (0,1]$ , let $L_n(x)=\max \{d_1(x),d_2(x),\ldots ,d_n(x)\}$ be the largest digit among the first n terms of the Lüroth expansion of x. The first metrical result on $L_n(x)$ was given by Galambos [Reference Galambos6] in 1976: for Lebesgue almost all $x\in (0,1]$ ,

(1.2) $$ \begin{align} \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log n}=1. \end{align} $$

That is, $\log L_n(x)$ tends to infinity steadily with the speed $\log n$ .

From the point of view of multifractal analysis, Shen et al. [Reference Shen, Yu and Zhou14] studied the level sets

(1.3) $$ \begin{align} \bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log n}=\gamma\bigg\}, \quad \gamma\geq0, \end{align} $$

and showed that they have full Hausdorff dimension. Recently, Lin and Li [Reference Lin and Li11] generalised this result by considering the size of the sets for which the limit in (1.3) may not exist. More precisely, they proved that for $0\leq \alpha \leq \beta \leq \infty $ , the set

(1.4) $$ \begin{align} \bigg\{x\in(0,1]: \liminf\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log n}=\alpha, \limsup\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log n}=\beta\bigg\} \end{align} $$

has Hausdorff dimension one.

After (1.3) and (1.4), it is natural to wonder how large the sets are when $\log L_n(x)$ tends to infinity at a different rate. We will investigate the Hausdorff dimension of the sets when $\log L_n(x)$ grows with slowly increasing speed as defined below.

Definition 1.1 [Reference Jakimczuk8, Reference Jakimczuk9].

Let $f(x)$ be a function defined on the interval $[c,\infty )$ such that $f(x)>0$ , $\lim _{x\rightarrow \infty }f(x)=\infty $ and with continuous derivative $f'(x)>0$ . We say the function $f(x)$ is slowly increasing if $ \lim _{x\rightarrow \infty }{xf'(x)}/{f(x)}=0. $

Slowly increasing functions were used recently by Jakimczuk [Reference Jakimczuk8, Reference Jakimczuk9] as a tool to study the asymptotic properties of Bell numbers. Typical slowly increasing functions are $\log x$ , $\log \log x$ , $\log ^2x$ , ${\log x}/{\log \log x}$ . The elementary properties of slowly increasing functions will be presented in Section 2.

We complement the limit theorem (1.2) by studying the following two sets:

$$\begin{align*}E_\psi(\alpha):=\bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=\alpha\bigg\}, \end{align*}$$
$$\begin{align*}E_\psi(a,b):=\bigg\{x\in(0,1]: \liminf\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=a, \limsup\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=b\bigg\}, \end{align*}$$

where $0\leq \alpha \leq \infty $ , $0\leq a\leq b\leq \infty $ and $\psi $ is a positive function defined on $(0,\infty )$ . We will establish the following two main theorems. We use $\dim _H$ to denote the Hausdorff dimension.

Theorem 1.2. If the function $\log \psi $ is slowly increasing, then $\dim _HE_\psi (\alpha )=1$ for any real number $\alpha $ with $0\leq \alpha \leq \infty $ .

Theorem 1.3. If the function $\log \psi $ is slowly increasing, then $\dim _HE_\psi (a,b)=1$ for any real numbers $a,b$ with $0\leq a\leq b\leq \infty $ .

In particular, we can take $\psi (x)=x^\gamma \ (\gamma>0)$ , $\psi (x)=x^{\log x}$ and $\psi (x)=\log x$ in Theorem 1.3 to give the following result.

Corollary 1.4. If $0\leq a\leq b\leq \infty $ and $\gamma>0$ , then

$$\begin{align*}\dim_HE_{\{n^\gamma\}}(a,b)=\dim_HE_{\{n^{\log n}\}}(a,b)=\dim_HE_{\{\log n\}}(a,b)=1. \end{align*}$$

Notice that if we take $\psi (n)=n$ in Theorems 1.2 and 1.3, then we obtain the special results $\dim _HE_{\psi }(\alpha )=\dim _HE_{\psi }(a,b)=1$ given in [Reference Lin and Li11, Reference Shen, Yu and Zhou14]. Theorem 1.3 also implies the following result.

Corollary 1.5. If the function $\log \psi $ is slowly increasing, the set

$$\begin{align*}\bigg\{x\in(0,1]:\liminf\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\log\psi(n)}<\limsup\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\log\psi(n)} \bigg\} \end{align*}$$

has full Hausdorff dimension.

For more results concerning the largest digits in Lüroth expansions and continued fraction expansions, see [Reference Liao and Rams10, Reference Song, Fang and Ma15Reference Zhang and Ma17]. For the definitions and elementary properties of Hausdorff dimension, Falconer’s book [Reference Falconer4] is recommended.

2 Preliminaries

In this section, we will list some elementary results related to Lüroth expansions and present some notation and basic facts that will be used later.

Let $\{d_n\}_{n\geq 1}$ be a sequence of integers not less than $2$ . We call

$$\begin{align*}I_n(d_1,\ldots,d_n)=\{x\in(0,1]: d_k(x)=d_k \text{ for } 1\leq k\leq n\} \end{align*}$$

a cylinder of level n, whose endpoints and length denoted by $|I_n(d_1,\ldots ,d_n)|$ are determined by the following lemma.

Lemma 2.1 [Reference Galambos6].

Let $I_n(d_1,\ldots ,d_n)$ be a cylinder of level n. Then the left and right endpoints are

$$\begin{align*}\frac{1}{d_1}+\frac{1}{d_1(d_1-1)d_2}+\cdots+\prod\limits_{k=1}^{n-1}\frac{1}{d_k(d_k-1)}\frac{1}{d_n} \end{align*}$$

and

$$\begin{align*}\frac{1}{d_1}+\frac{1}{d_1(d_1-1)d_2}+\cdots+\prod\limits_{k=1}^{n-1}\frac{1}{d_k(d_k-1)}\frac{1}{d_n}+\prod\limits_{k=1}^{n}\frac{1}{d_k(d_k-1)}. \end{align*}$$

As a result,

$$\begin{align*}|I_n(d_1,\ldots,d_n)|=\prod\limits_{k=1}^{n}\frac{1}{d_k(d_k-1)}. \end{align*}$$

For $m\in \mathbb {N}$ with $m\geq 2$ , write $\Sigma _m=\{2,3,\ldots ,m\}$ . Let $E_m$ be the set consisting of all points in $(0,1]$ whose digits are less than m, that is,

$$\begin{align*}E_m=\{x\in(0,1]: d_n(x)\in\Sigma_m \text{ for all } n\geq1\}. \end{align*}$$

It is known that the set $E_m$ can be regarded as a self-similar set generated by contracting similarities $\{{x}/{a(a-1)}+{1}/{a}\}_{a=2}^{m}$ . The following lemma is a classic result which gives the dimension of $E_m$ .

Lemma 2.2 [Reference Hutchinson7, Reference Shen and Liu13].

For any $m\geq 2$ , $\dim _HE_m=s_m$ , where $s_m$ is the solution s of the equation

$$\begin{align*}\sum\limits_{2\leq a\leq m}\bigg(\frac{1}{a(a-1)}\bigg)^s=1. \end{align*}$$

Moreover, $\lim _{m\rightarrow \infty }s_m=1$ .

Next, we present a key tool which indicates that the Hausdorff dimensions of some specific sets are stationary to the dimension of $E_m$ under certain Hölder mappings defined below.

Let $\mathbb {J}=\{n_1<n_2<\cdots \}\subset \mathbb {N}$ and $f_{\mathbb {J}}: (0,1]\rightarrow (0,1]$ be a mapping satisfying

$$\begin{align*}f_{\mathbb{J}}: x=[d_1(x),d_2(x),\ldots]\mapsto \overline{x}:=\overline{[d_1(x),d_2(x),\ldots]}=[d_1(\overline{x}),d_2(\overline{x}),\ldots], \end{align*}$$

where the number $\overline {x}$ is obtained by deleting all $\{d_{n_k}(x)\}_{k\geq 1}$ in the Lüroth expansion of x. For $m\geq 2$ and $\{a_n\}_{n\geq 1}$ a sequence of integers, set

$$\begin{align*}F_m(\mathbb{J},\{a_k\}):=\{x\in(0,1]: d_{n_k}(x)=a_k, d_n(x)\in\Sigma_m \text{ for } n\neq n_k\text{ for all } k\geq1\}. \end{align*}$$

Lemma 2.3. Fix $m\geq 2$ and a set of positive integers $\mathbb {J}=\{n_1<n_2<\cdots \}$ . Let $\{a_k\}_{k\geq 1}$ be an increasing positive integer sequence satisfying $a_k\rightarrow \infty $ as $k\rightarrow \infty $ and

(2.1) $$ \begin{align} \lim\limits_{k\rightarrow\infty}\frac{k\log a_k}{n_k}=0. \end{align} $$

Then $ \dim _HF_m(\mathbb {J},\{a_k\})=\dim _Hf_{\mathbb {J}}(F_m(\mathbb {J},\{a_k\}))=\dim _HE_m=s_m. $

Proof. The main idea of the proof of Lemma 2.3 comes from [Reference Wu and Xu16]. Here we will modify the calculations in [Reference Shen, Yu and Zhou14] and give a sketch of the proof of this argument.

To estimate the dimension of $F_m(\mathbb {J},\{a_k\})$ , we shall use the terminology of symbolic space. For each $n\geq 1$ , let

$$\begin{align*}D_n=\{(\sigma_1,\ldots,\sigma_n)\in\mathbb{N}^n: \sigma_{n_k}=a_k \text{ and } \sigma_i\in\Sigma_m, 1\leq i\neq n_k\leq n\}. \end{align*}$$

For any $n\geq 1$ and $(\sigma _1,\ldots ,\sigma _n)\in D_n$ , we call

$$\begin{align*}J_n(\sigma_1,\ldots,\sigma_n)=\bigcup\limits_{\sigma_{n+1}}I_{n+1}(\sigma_1,\ldots,\sigma_{n},\sigma_{n+1}) \end{align*}$$

the fundamental interval of level n, where the union is taken over all $\sigma _{n+1}$ such that $(\sigma _1,\ldots ,\sigma _{n},\sigma _{n+1})\in D_{n+1}$ . Clearly,

$$\begin{align*}F_m(\mathbb{J},\{a_k\})=\bigcap\limits_{n\geq1}\bigcup\limits_{(\sigma_1,\ldots,\sigma_{n})\in D_n}I_n(\sigma_1,\ldots,\sigma_{n}) =\bigcap\limits_{n\geq1}\bigcup\limits_{(\sigma_1,\ldots,\sigma_{n})\in D_n}J_n(\sigma_1,\ldots,\sigma_{n}). \end{align*}$$

By the definition of $f_{\mathbb {J}}$ with $\mathbb {J}=\{n_k\}_{k\geq 1}$ , we can assume that $n_k\leq n<n_{k+1}$ for some ${k\in \mathbb {N}}$ . Then $\overline {(\sigma _1,\ldots ,\sigma _{n})}:=f_{\mathbb {J}}((\sigma _1,\ldots ,\sigma _{n}))$ is obtained by deleting the k terms $\{\sigma _{n_i}\}_{i=1}^{k}$ in $(\sigma _1,\ldots ,\sigma _{n})$ . Write

$$\begin{align*}\overline{I_{n}}(\sigma_1,\ldots,\sigma_{n}):=I_{n-k}\overline{(\sigma_1,\ldots,\sigma_{n})}. \end{align*}$$

Then we have the following claim.

Claim 1. For any $\varepsilon>0$ , there exists $N_0>0$ such that for all $n\geq N_0$ and $(\sigma _1,\ldots ,\sigma _{n})\in D_n$ , we have

$$\begin{align*}|I_n(\sigma_1,\ldots,\sigma_{n})|\geq|\overline{I_{n}}(\sigma_1,\ldots,\sigma_{n})|^{1+\varepsilon}. \end{align*}$$

In fact, (2.1) implies that for any $\varepsilon>0$ , there exists $N_0>0$ such that for all $k>N_0$ , we have $k\log a_k<\tfrac {1}{2}\varepsilon \log 2 n_k$ . We can assume that $n_k\leq n<n_{k+1}$ and obtain

(2.2) $$ \begin{align} |I_n(\sigma_1,\ldots,\sigma_{n})|^{\varepsilon}\leq\frac{1}{2^{(n-k)\varepsilon}}\leq\frac{1}{2^{n_{k}\varepsilon}}\leq\frac{1}{a_{k}^{2k}}. \end{align} $$

Since $\{a_k\}$ is increasing, (2.2) and Lemma 2.1 give

$$ \begin{align*} |I_n(\sigma_1,\cdots,\sigma_{n})|&=|\overline{I_n}(\sigma_1,\ldots,\sigma_{n})| /{\sigma_{n_1}(\sigma_{n_1}-1)\cdots\sigma_{n_k}(\sigma_{n_k}-1)} \\ &\geq|\overline{I_n}(\sigma_1,\ldots,\sigma_{n})| /{a_k^{2k}} \\ &\geq|\overline{I_n}(\sigma_1,\ldots,\sigma_{n})|^{1+\varepsilon}. \end{align*} $$

Let x and y belong to the set $F_m(\mathbb {J},\{a_k\})$ with $x\neq y$ . It follows that there exists a largest integer n such that x and y are both contained in the same cylinder of level n. The next claim is devoted to estimating the distance between x and y, which is very similar to [Reference Shen, Yu and Zhou14, Lemma 3.3], so we omit the details.

Claim 2. Let n be the largest level of the cylinders which contain both x and y. Then

$$\begin{align*}|y-x|\geq\min\bigg\{\frac{|I_n(\sigma_1,\ldots,\sigma_{n})|}{m^2\cdot a_n},\frac{|I_n(\sigma_1,\ldots,\sigma_{n})|}{m^3}\bigg\}. \end{align*}$$

Therefore, when $x,y\in F_m(\mathbb {J},\{a_k\})$ with

$$\begin{align*}|x-y|<\min\limits_{(\sigma_1,\ldots,\sigma_{N_0})\in D_{N_0}}\bigg\{\frac{I_{N_0}(\sigma_1,\ldots,\sigma_{N_0})}{m^2 a_{N_0+2}}, \frac{I_{N_0}(\sigma_1,\ldots,\sigma_{N_0})}{m^3}\bigg\}, \end{align*}$$

we have

$$\begin{align*}|f(x)-f(y)|\leq\max\{m^2 a_{N_0+2},m^3\}^{1+\varepsilon}\cdot|x-y|^{{1}/{\varepsilon}}. \end{align*}$$

From these two claims and [Reference Falconer4, Proposition 2.3], we obtain

$$\begin{align*}\dim_HF_m(\mathbb{J},\{a_k\})\geq\frac{1}{1+\varepsilon}\dim_Hf_{\mathbb{J}}(F_m(\mathbb{J},\{a_k\}))=\frac{1}{1+\varepsilon}\dim_HE_m \end{align*}$$

and so $\dim _HF_m(\mathbb {J},\{a_k\})\geq \dim _Hf_{\mathbb {J}}(F_m(\mathbb {J},\{a_k\}))$ by letting $\varepsilon \rightarrow 0$ .

To see that $\dim _HF_m(\mathbb {J},\{a_k\})\leq \dim _Hf_{\mathbb {J}}(F_m(\mathbb {J},\{a_k\}))$ , it suffices to show that the mapping

$$\begin{align*}f_{\mathbb{J}}^{-1}: f_{\mathbb{J}}(F_m(\mathbb{J},\{a_k\}))\rightarrow F_m(\mathbb{J},\{a_k\}) \end{align*}$$

is $1$ -Hölder. For any $y_1,y_2\in f_{\mathbb {J}}(F_m(\mathbb {J},\{a_k\}))$ , let $y_1,y_2\in I_{n}(\sigma _1,\ldots ,\sigma _{n})$ with $\sigma _{n+1}(y_1)\neq \sigma _{n+1}(y_2)$ . Let $x_1=f_{\mathbb {J}}^{-1}(y_1),x_2=f_{\mathbb {J}}^{-1}(y_2)$ . By the definition of $f_{\mathbb {J}}^{-1}$ , we know that $x_1$ and $x_2$ are obtained by inserting the sequence $\{a_k\}_{k\geq 1}$ in the Lüroth expansions of $y_1$ and $y_2$ at the positions $\{n_{k}\}_{k\geq 1}$ , respectively. Let $M\in \mathbb {N}$ be such that we can insert just M integers $\{a_{i}\}_{i=1}^{M}$ into the block $(\sigma _1,\ldots ,\sigma _{n})$ . Then $x_1$ and $x_2$ have at least $n+M$ common digits in their Lüroth expansions. By Lemma 2.1,

$$ \begin{align*} \displaystyle |x_1-x_2|&\leq|I_{n+M}(\sigma_1,\ldots,\sigma_{n+M})| \\ \displaystyle &\leq|I_n(\sigma_1,\ldots,\sigma_{n})| /{\sigma_{n_1}(\sigma_{n_1}-1)\cdots\sigma_{n_k}(\sigma_{n_k}-1)} \\ \displaystyle &\leq\tfrac{1}{2}|I_n(\sigma_1,\ldots,\sigma_{n})|. \end{align*} $$

However, similar to the argument in Claim 2, we also have

$$\begin{align*}|y_1-y_2|\geq\min\bigg\{\frac{|I_n(\sigma_1,\ldots,\sigma_{n})|}{m^2\cdot a_n},\frac{|I_n(\sigma_1,\ldots,\sigma_{n})|}{m^3}\bigg\}. \end{align*}$$

It follows that

$$\begin{align*}|f_{\mathbb{J}}^{-1}(y_1)-f_{\mathbb{J}}^{-1}(y_2)|=|x_1-x_2|\leq\tfrac{1}{2}\max\{m^2 a_{N_0+2},m^3\}\cdot|y_1-y_2|, \end{align*}$$

showing that $f_{\mathbb {J}}^{-1}$ is $1$ -Hölder and $ \dim _HF_m(\mathbb {J},\{a_k\})\leq \dim _Hf_{\mathbb {J}}(F_m(\mathbb {J},\{a_k\})). $

We end this section by presenting the following lemma which exhibits some basic properties of slowly increasing functions.

Lemma 2.4 [Reference Jakimczuk8].

Let the functions $f(x)$ and $g(x)$ be slowly increasing and $\gamma $ be a positive constant. Then,

  1. (1) the function $f(x^\gamma )$ is slowly increasing;

  2. (2) the function $f(x^\gamma g(x))$ is slowly increasing;

  3. (3) $\lim _{n\rightarrow \infty } {\log f(x)}/{\log x}=0;$

  4. (4) $\lim _{n\rightarrow \infty }{f(x+1)}/{f(x)}=1.$

3 Proofs

This section is devoted to the proofs of our main results. To prove Theorem 1.2, we will construct a suitable subset $F_{m}(\mathbb {J},\{a_k\})$ of $E_\psi (\alpha )$ , so that the result can be established by using Lemma 2.3. As for the proof of Theorem 1.3, since the nonexistence of the limit in $E_\psi (a,b)$ describes the essence of the question compared with the known results, we need to carefully construct a nice Cantor subset in the lower bound estimations for the Hausdorff dimension. Our proof provides a convenient method to estimate the lower bound for the Hausdorff dimension, which is very different from the method used in [Reference Lin and Li11].

Proof of Theorem 1.2.

The proof is divided into three cases according as $\alpha =0$ , $0<\alpha <\infty $ and $\alpha =\infty $ .

Case 1: $\alpha =0$ . In this case, it is clear that $E_m\subset E_\psi (0)$ . Therefore the result follows directly by Lemma 2.2.

Case 2: $0<\alpha <\infty $ . Let $m\geq 2$ and $\{a_n\}_{n\geq 1}$ be a sequence of integers and recall the set

$$\begin{align*}F_m(\mathbb{J},\{a_k\}):=\{x\in(0,1]: d_{n_k}(x)=a_k, d_n(x)\in\Sigma_m \text{ for } n\neq n_k \text{ for all } k\geq1\} \end{align*}$$

defined in Lemma 2.3. Here we take $n_k=k^2$ and $a_k=\lfloor \psi (k^2)^\alpha \rfloor $ for each $k\geq 1$ .

On the one hand, for any $x\in F_m(\mathbb {J},\{a_k\})$ , if $k^2\leq n<(k+1)^2$ for some integer k, then

$$\begin{align*}\frac{\log\lfloor\psi(k^2)^\alpha\rfloor}{\log\psi((k+1)^2)}\leq\frac{\log L_n(x)}{\log\psi(n)}\leq\frac{\log\lfloor\psi(k^2)^\alpha\rfloor}{\log\psi(k^2)}. \end{align*}$$

From Lemma 2.4(1) and (4),

$$\begin{align*}\lim\limits_{n\rightarrow\infty}\frac{\log\psi(k^2)}{\log\psi((k+1)^2)}=1. \end{align*}$$

Consequently,

$$\begin{align*}\lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=\alpha, \end{align*}$$

which yields $F_m(\mathbb {J},\{a_k\})\subset E_\psi (\alpha )$ .

On the other hand, since $\log \psi $ is slowly increasing, Lemma 2.4(3) implies that

$$\begin{align*}\lim\limits_{k\rightarrow\infty}\frac{\log\log\psi(k)}{\log k}=0, \end{align*}$$

which ensures that for any $\varepsilon $ with $0<\varepsilon <\tfrac {1}{2}$ and sufficiently large k,

(3.1) $$ \begin{align} \log\psi(k)<k^{\varepsilon}. \end{align} $$

This gives

$$\begin{align*}\lim\limits_{k\rightarrow\infty}\frac{k\log\lfloor\psi(k^2)^\alpha\rfloor}{k^2}\leq\lim\limits_{k\rightarrow\infty}\frac{\alpha\cdot k^{1+2\varepsilon}}{k^2}=0, \end{align*}$$

that is, (2.1) in Lemma 2.3 holds. From Lemma 2.3,

$$\begin{align*}\dim_{H}E_\psi(\alpha)\geq\dim_HF_m(\mathbb{J},\{a_k\})=\dim_HE_m=s_m \end{align*}$$

and we obtain the result in Theorem 1.2 by letting $m\rightarrow \infty $ .

Case 3: $\alpha =\infty $ . In this case, for each $k\geq 1$ , we take

$$\begin{align*}n_k=\lfloor k^2\log k\rfloor\quad \text{and} \quad a_k=\lfloor(\psi(k^2\log k))^{(\log k)^{{1}/{2}}}\rfloor \end{align*}$$

in the definition of the set $F_m(\mathbb {J},\{a_k\})$ in Lemma 2.3.

We show first that $F_m(\mathbb {J},\{a_k\})\subset E_\psi (\infty )$ . For every $x\in F_m(\mathbb {J},\{a_k\})$ , since the functions $\log \psi (x)$ and $\log x$ are slowly increasing, Lemma 2.4(2) and (4) give

$$\begin{align*}\lim\limits_{n\rightarrow\infty}\frac{\log(\psi(k^2\log k))}{\log(\psi((k+1)^2\log(k+1)))}=1. \end{align*}$$

So if $\lfloor k^2\log k\rfloor \leq n<\lfloor (k+1)^2\log (k+1)\rfloor $ for some integer k, then

$$\begin{align*}\lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}\geq\lim\limits_{k\rightarrow\infty}\frac{(\log k)^{1/2}\cdot\log(\lfloor\psi(k^2\log k)\rfloor)} {\log(\psi(\lfloor(k+1)^2\log(k+1)\rfloor))}=\lim\limits_{k\rightarrow\infty}(\log k)^{1/2}=\infty, \end{align*}$$

which means $F_m(\mathbb {J},\{a_k\})\subset E_\psi (\infty )$ .

Next, (3.1) holds for any $\varepsilon $ with $0<\varepsilon <\tfrac {1}{2}$ as in the last case, and we can check that (2.1) still holds here, namely

$$\begin{align*}\lim\limits_{k\rightarrow\infty}\frac{k\log\lfloor(\psi(k^2\log k))^{(\log k)^{{1}/{2}}}\rfloor}{\lfloor k^2\log k\rfloor} \leq\lim\limits_{k\rightarrow\infty}\frac{\log\psi(k^2\log k)}{k(\log k)^{{1}/{2}}}\leq\lim\limits_{k\rightarrow\infty}k^{2\varepsilon-1}(\log k)^{\varepsilon-{1}/{2}}=0. \end{align*}$$

Hence, by Lemma 2.3,

$$\begin{align*}\dim_{H}E_\psi(\infty)\geq\dim_HF_m(\mathbb{J},\{a_k\})=\dim_HE_m=s_m. \end{align*}$$

Then we finish the proof of Theorem 1.2 by letting $m\rightarrow \infty $ .

Proof of Theorem 1.3.

We give the proof of Theorem 1.3 for the case $0<a<b<\infty $ in detail. The argument for other cases involves minor modifications. In the following, we will write $\phi :=\log \psi $ for simplicity.

Case 1: $0<a<b<\infty $ . Let $\phi $ be a slowly increasing function. Our strategy is to find a nice Cantor subset of $E_\psi (a,b)$ with full Hausdorff dimension. To this end, we construct another slowly increasing function $\widetilde {\phi }$ satisfying some specific properties with respect to $\phi $ . Then the proof can be completed by using the result mentioned in Theorem 1.2.

For $0<a<b<\infty $ , define $\widetilde {\phi }(x)$ on $(0,\infty )$ such that $\widetilde {\phi }(x)>0$ and, for any $n\in \mathbb {N}$ ,

$$\begin{align*}\widetilde{\phi}(n)=\frac{a+b}{2}\phi(n)+\frac{b-a}{2}\phi(n)\sin\bigg(\frac{a}{b-a}\log\phi(n)\bigg). \end{align*}$$

Proposition 3.1. Let $\phi (n)$ be slowly increasing and define the function $\widetilde {\phi }$ as above. Then $\widetilde {\phi }$ is also slowly increasing and

(3.2) $$ \begin{align} \liminf\limits_{n\rightarrow\infty}\frac{\widetilde{\phi}(n)}{\phi(n)}=a,\quad \limsup\limits_{n\rightarrow\infty}\frac{\widetilde{\phi}(n)}{\phi(n)}=b. \end{align} $$

Proof. First, $0<a\cdot \phi \leq \widetilde {\phi }\leq b\cdot \phi $ and $\widetilde {\phi }\rightarrow \infty $ as $x\rightarrow \infty $ . Next, we check that the function $\widetilde {\phi }(x)$ has positive derivative. In fact,

$$ \begin{align*} \widetilde{\phi}'(x)&=\bigg(\frac{a+b}{2}\phi(x)+\frac{b-a}{2}\phi(x)\sin\bigg(\frac{a}{b-a}\log\phi(x)\bigg)\bigg)' \\ &=\frac{a+b}{2}\phi'(x)+\frac{b-a}{2}\phi'(x)\sin\bigg(\frac{a}{b-a}\log\phi(x)\bigg) \\ &\quad +\frac{b-a}{2}\phi(x)\cos\bigg(\frac{a}{b-a}\log\phi(x)\bigg)\frac{a}{b-a}\cdot\phi^{-1}(x)\cdot\phi'(x) \\ &\geq\frac{a+b}{2}\phi'(x)-\frac{b-a}{2}\phi'(x)-\frac{a}{2}\phi'(x) =\frac{a}{2}\phi'(x)>0, \end{align*} $$

where the last inequality follows from the fact that $\phi $ is slowly increasing. The calculation also implies that

$$\begin{align*}\bigg|\frac{x\widetilde{\phi}'(x)}{\widetilde{\phi}(x)}\bigg| \leq \bigg| \frac{x}{a\phi(x)} \bigg(\frac{a+b}{2}\phi'(x)+\frac{b-a}{2}\phi'(x)+\frac{a}{2}\phi'(x)\bigg) \bigg| \rightarrow0 \quad \text{as } x\rightarrow\infty. \end{align*}$$

Therefore, $\widetilde {\phi }$ is also a slowly increasing function. By the construction of $\widetilde {\phi }$ , (3.2) holds immediately.

Let $\widetilde {\phi }=\log \widetilde {\psi }$ be the slowly increasing function defined above, where $\widetilde {\psi }$ is a positive function defined on $(0,\infty )$ . We replace $\widetilde {\phi }$ with $\phi =\log \psi $ and take $\alpha =1$ in the set $E_\psi (\alpha )$ in Theorem 1.2. The Hausdorff dimension of the set

$$\begin{align*}E_{\widetilde{\psi}}(1):=\bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\widetilde{\phi}(n)}=1\bigg\} \end{align*}$$

is full. The lower bound of $\dim _HE_\psi (a,b)$ follows directly by Proposition 3.1 and the fact that $E_{\widetilde {\psi }}(1)\subset E_\psi (a,b)$ . To see this, note that for any $x\in E_{\widetilde {\psi }}(1)$ ,

$$ \begin{align*} \liminf\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\phi(n)} &=\lim\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\widetilde{\phi}(n)}\cdot \liminf\limits_{n\rightarrow\infty}\frac{\widetilde{\phi}(n)}{\phi(n)}=a, \\ \limsup\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\phi(n)} &=\lim\limits_{n\rightarrow\infty}\frac{\log L_{n}(x)}{\widetilde{\phi}(n)}\cdot \limsup\limits_{n\rightarrow\infty}\frac{\widetilde{\phi}(n)}{\phi(n)}=b, \end{align*} $$

which means that $x\in E_\psi (a,b)$ .

Case 2: $0=a<b<\infty $ . The proof is similar to the case when $0<a<b<\infty $ . We only need to modify the construction of the function $\widetilde {\phi }$ to make sure that Proposition 3.1 still holds. We define $\widetilde {\phi }(x)$ on $(0,\infty )$ such that $\widetilde {\phi }(x)>0$ by taking

$$\begin{align*}\widetilde{\phi}(x)=\frac{b\phi(x)}{\log\log\phi(x)}+\frac{1}{2}b\phi(x)(\sin(\log\log\phi(x))+1). \end{align*}$$

Equation (3.2) holds directly and we can check that $\widetilde {\phi }(x)$ satisfies $\widetilde {\phi }'(x)>0$ and $|{x\widetilde {\phi }'(x)}/{\widetilde {\phi }(x)}|\rightarrow 0$ as $x\rightarrow \infty $ . Thus $\widetilde {\phi }(x)$ is slowly increasing.

For the remaining cases, the discussions run as before, so we only give the constructions of the slowly increasing functions $\widetilde {\phi }(x)$ as follows.

Case 3: $0<a<b=\infty $ . Take

$$\begin{align*}\widetilde{\phi}(x)=a\phi(x)+\phi(x)\log\phi(x)\bigg(\sin\bigg(\frac{a}{2}\log\log\phi(x)\bigg)+1\bigg). \end{align*}$$

Case 4: $0=a<b=\infty $ . Take

$$\begin{align*}\widetilde{\phi}(x)=\frac{\phi(x)}{\log\log\phi(x)}+\frac{1}{2}\phi(x)\log\phi(x)(\sin(\log\log\log\phi(x))+1). \end{align*}$$

Case 5: $0<a=b<\infty $ . Take $ \widetilde {\phi }(x)=a\phi (x). $

Case 6: $a=b=\infty $ . Take $ \widetilde {\phi }(x)=\phi (x)\log x. $

Case 7: $a=b=0$ . Take $ \widetilde {\phi }(x)=\log \phi (x). $

Acknowledgment

The authors wish to warmly thank the anonymous referee for the helpful suggestions to improve the readability of this paper.

Footnotes

This research was supported by National Natural Science Foundation of China (No. 12101191), Natural Science Research Project of West Anhui University (No. WGKQ2021020) and Provincial Natural Science Research Project of Anhui Colleges (No. KJ2021A0950).

References

Barreira, L. and Iommi, G., ‘Frequency of digits in the Lüroth expansion’, J. Number Theory 129(6) (2009), 14791490.CrossRefGoogle Scholar
Cao, C. Y., Wu, J. and Zhang, Z. L., ‘The efficiency of approximating real numbers by Lüroth expansion’, Czechoslovak Math. J. 63 (2013), 497513.CrossRefGoogle Scholar
Dajani, K. and Kraaikamp, C., Ergodic Theory of Numbers (Mathematical Association of America, Washington, DC, 2002).CrossRefGoogle Scholar
Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, 2nd edn (John Wiley and Sons, Chichester, 2004).Google Scholar
Fan, A. H., Liao, L. M., Ma, J. H. and Wang, B. W., ‘Besicovitch–Eggleston sets in the countable symbolic space’, Nonlinearity 23(5) (2010), 11851197.10.1088/0951-7715/23/5/009CrossRefGoogle Scholar
Galambos, J., Representations of Real Numbers by Infinite Series, Lecture Notes in Mathematics, 502 (Springer-Verlag, Berlin–Heidelberg–New York, 1976).CrossRefGoogle Scholar
Hutchinson, J., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30 (1981), 713747.10.1512/iumj.1981.30.30055CrossRefGoogle Scholar
Jakimczuk, R., ‘Functions of slow increase and integer sequences’, J. Integer Seq. 13 (2010), Article no. 10.1.1.Google Scholar
Jakimczuk, R., ‘Integer sequences, functions of slow increase, and the Bell numbers’, J. Integer Seq. 14 (2011), Article no. 11.5.8.Google Scholar
Liao, L. M. and Rams, M., ‘Subexponentially increasing sums of partial quotients in continued fraction expansions’, Math. Proc. Cambridge Philos. Soc. 160(3) (2016), 401412.CrossRefGoogle Scholar
Lin, S. Y. and Li, J. J., ‘Exceptional sets related to the largest digits in Lüroth expansions’, Int. J. Number Theory, to appear.Google Scholar
Lüroth, J., ‘Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe’, Math. Ann. 21 (1883), 411423.CrossRefGoogle Scholar
Shen, L. M. and Liu, Y. H., ‘A note on a problem of J. Galambos’, Turkish J. Math. 32 (2008), 103109.Google Scholar
Shen, L. M., Yu, Y. Y. and Zhou, Y. X., ‘A note on the largest digits in Lüroth expansion’, Int. J. Number Theory 10 (2014), 10151023.CrossRefGoogle Scholar
Song, K. K., Fang, L. L. and Ma, J. H., ‘Level sets of partial maximal digits for Lüroth expansion’, Int. J. Number Theory 13 (2017), 27772790.10.1142/S1793042117501536CrossRefGoogle Scholar
Wu, J. and Xu, J., ‘The distribution of the largest digit in continued fraction expansions’, Math. Proc. Cambridge Philos. Soc. 146 (2009), 207212.10.1017/S0305004108001771CrossRefGoogle Scholar
Zhang, M. J. and Ma, C., ‘On the exceptional sets concerning the leading partial quotient in continued fractions’, J. Math. Anal. Appl. 500(1) (2021), Article no. 125110.10.1016/j.jmaa.2021.125110CrossRefGoogle Scholar