No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
In this paper we will be concerned with orbits of a closed subgroup Z of an algebraic group (respectively Lie group) G on a homogeneous space X for G. More precisely, let D be a closed subgroup of G and let X denote the coset space G/D. Let S be a subgroup of G and let Z denote (GS)0 the identity component of GS, the centralizer of S in G. We consider the orbits of Z on XS, the set of fixed points of S on X. We also treat the more general situation in which S is an algebraic group (respectively Lie group) which acts on G by automorphisms and acts on X compatibly with the action of G; again we consider the orbits of (GS)0 on XS.