Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:53:32.380Z Has data issue: false hasContentIssue false

On the Lie ring of a group of prime exponent II

Published online by Cambridge University Press:  17 April 2009

G.E. Wall
Affiliation:
Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p be a prime number. The Lie ring of the largest finite group of exponent p and nilpotency class 3p − 3 is determined under certain assumptions (which are conjectured always to hold).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

[1]Dieudonné, Jean, “On the Artin-Hasse exponential series”, Proc. Amer. Math. Soc. 8 (1957), 210214.CrossRefGoogle Scholar
[2]Havas, George, Wall, G.E., and Wamsley, J.W., “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc. 10 (1974), 459470.CrossRefGoogle Scholar
[3]Holenweg, W., “Die Dimensionsdefekte der Burnside-Gruppen mit zwei Erzeugenden”, Comment. Math. Helv. 35 (1961), 169200.CrossRefGoogle Scholar
[4]Holenweg, W., “Über die Ordnung von Burnside-Gruppen mit endlich vielen Erzeugenden”, Comment. Math. Helv. 36 (1962), 8390.CrossRefGoogle Scholar
[5]Ностринин, A.И [A.I. Kostrikin], “О связи между периодичесними группами и нольцами ли.” [On the connection between periodic groups and Lie rings], Izv. Akad. Nauk SSSR Ser. Math. 21 (1957), 289310; English Translation: Amer. Math. Soc. Transl. (2) 45 (1965), 165–189.Google ScholarPubMed
[6]Krause, Eugene F. and Weston, Kenneth W., “On the Lie algebra of a Burnside group of exponent 5”, Proc. Amer. Math. Soc. 27 (1971), 463470.CrossRefGoogle Scholar
[7]Lazard, M., “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. École Norm. Sup. (3) 71 (1954), 101190.CrossRefGoogle Scholar
[8]Wall, G.E., “On the Lie ring of a group of prime exponent”, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, 667690 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar