Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:41:40.087Z Has data issue: false hasContentIssue false

On the orders of primitive linear P'-groups

Published online by Cambridge University Press:  17 April 2009

A. Gambini Weigel
Affiliation:
Mathematishces Institut Albert-Ludwigs-Universität, Albertstr.23b D78 Freiburg
T.S. Weigel
Affiliation:
Mathematishces Institut Albert-Ludwigs-Universität, Albertstr.23b D78 Freiburg
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group G ≤ GLK(V) is called K-primitive if there exists no non-trivial decomposition of V into a sum of K-spaces which is stabilised by G. We show that if V is a finite vector space and G a K-primitive subgroup of GLK(V) whose order is coprime to |V|, we can bound the order of G by |V|log2(|V|) apart from one exception. Later we use this result to obtain some lower bounds on the number of p–singular elements in terms of the group order and the minimal representation degree.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Aschbacher, M., ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76 (1984), 469514.CrossRefGoogle Scholar
[2]Aschbacher, M. and Guralnick, R., ‘On abelian quotients of primitive groups’, Proc. Amer. Math. Soc. 107 (1989), 8995.CrossRefGoogle Scholar
[3]Carter, R.W., Simple groups of Lie type (Wiley-Interscience, New York, 1972).Google Scholar
[4]Carter, R.W., Finite groups of Lie type: Conjugacy classes and complex characters (Wiley-Interscience, New York, 1985).Google Scholar
[5]Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A., An Atlas of finite groups (Oxford University Press, 1985).Google Scholar
[6]Cooperstein, B.N., ‘Minimal degree for a permutation representation of a classical group’, Israel J. Math. 30 (1978), 213235.CrossRefGoogle Scholar
[7]Easdown, D. and Praeger, C.E., ‘On minimal faithful permutation representations of finite groups’, Bull. Austral. Math. Soc. 38 (1988), 207220.CrossRefGoogle Scholar
[8]Weigel, A. Gambini, Bemerkungen zur Komplexität einiger gruppentheoretischer Algorithmen, Dissertation (Albert-Ludwigs-Universität Freiburg, 1992).Google Scholar
[9]Huppert, B., Endliche gruppen 1 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[10]Isaacs, I.M., Kantor, W.M. and Spaltenstein, N., ‘On the probability that a group element is p–singular’. Preprint.Google Scholar
[11]Kantor, W.M., ‘Polynomial-time algorithms for finding elements of prime order and Sylow subgroups’, J. Algorithms 6 (1985), 478514.CrossRefGoogle Scholar
[12]Kleidman, P., ‘The low-dimensional finite classical groups and their subgroups’, (to appear in Longman Research Notes).Google Scholar
[13]Kleidman, P. and Liebeck, M., The subgroup structure of the finite classical groups, LMS Lecture Notes Series 129 (Cambridge University Press, 1990).CrossRefGoogle Scholar
[14]Landazuri, V. and Seitz, G.M., ‘On the the minimal degrees of projective representations of the finite Chevalley groups’, J. Algebra 32 (1974), 418443.CrossRefGoogle Scholar
[15]Liebeck, M.W. and Saxl, J., ‘On the orders of maximal subgroups of the finite exceptional groups of Lie type’, Proc. London Math. Soc. 55 (1987), 299330.CrossRefGoogle Scholar
[16]Pàlfy, P.P., ‘A polynomial bound for the orders of primitive solvable groups’, J. Algebra 77 (1982), 127137.CrossRefGoogle Scholar
[17]Patton, W.H., The minimum index for subgroups in some classical groups: A generalisation of a theorem of Galois, Ph.D.Thesis (University of Illinois at Chicago Circle, 1972).Google Scholar
[18]Suprunenko, D.I., Matrix groups, Translation of Mathematical Monographs (American Mathematical Society, 1976).CrossRefGoogle Scholar
[19]Suzuki, M., Group theory II (Springer-Verlag, Berlin, Heidelberg, New York, 1982).Google Scholar