Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T15:57:13.876Z Has data issue: false hasContentIssue false

ON THE STABILISATION OF ONE-SIDED KUROSH’S CHAINS

Published online by Cambridge University Press:  23 February 2012

R. R. ANDRUSZKIEWICZ
Affiliation:
Institute of Mathematics, University of Białystok, 15-267 Białystok, Akademicka 2, Poland (email: randrusz@math.uwb.edu.pl)
M. SOBOLEWSKA*
Affiliation:
Institute of Mathematics, University of Białystok, 15-267 Białystok, Akademicka 2, Poland (email: magdas@math.uwb.edu.pl)
*
For correspondence; e-mail: magdas@math.uwb.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct an example showing that Kurosh’s construction of the lower strong radical in the class of associative rings may not terminate at any finite ordinal.

MSC classification

Secondary: 16D25: Ideals
Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Andruszkiewicz, R. R. and Pryszczepko, K., ‘On commutative reduced filial rings’, Bull. Aust. Math. Soc. 81 (2010), 310316.CrossRefGoogle Scholar
[2]Andruszkiewicz, R. R. and Puczyłowski, E. R., ‘Kurosh’s chains of associative rings’, Glasg. Math. J. 32 (1990), 6769.CrossRefGoogle Scholar
[3]Andruszkiewicz, R. R. and Puczyłowski, E. R., ‘Accessible subrings and Kurosh’s chains of associative rings’, Algebra Colloq. 4(1) (1997), 7988.Google Scholar
[4]Andruszkiewicz, R. R. and Sobolewska, M., ‘Commutative reduced filial rings’, Algebra Discrete Math. 3 (2007), 1826.Google Scholar
[5]Armendariz, E. P. and Leavitt, W. G., ‘The hereditary property in the lower radical construction’, Canad. J. Math. 20 (1968), 474476.CrossRefGoogle Scholar
[6]Beidar, K. I., ‘A chain of Kurosh may have an arbitrary finite length’, Czechoslovak Math. J. 32(3) (1982), 418422.CrossRefGoogle Scholar
[7]Cooke, G. J., ‘On lower radical type constructions’, Bull. Aust. Math. Soc. 83 (2011), 520521.CrossRefGoogle Scholar
[8]Divinsky, N., Krempa, J. and Sulinski, A., ‘Strong radical properties of alternative and associative rings’, J. Algebra 17 (1971), 369388.CrossRefGoogle Scholar
[9]France-Jackson, H., ‘*-rings and their radicals’, Quaest. Math. 8(3) (1985), 231239.CrossRefGoogle Scholar
[10]Gao, D. Y., Kelarev, A. V. and Yearwood, J. L., ‘Optimization of matrix semirings for classification systems’, Bull. Aust. Math. Soc. 84 (2011), 492503.CrossRefGoogle Scholar
[11]Gardner, B. J. and Wiegandt, R., Radical Theory of Rings (Marcel Dekker, New York, 2009).Google Scholar
[12]Heinicke, A. G., ‘A note on lower radical constructions for associative rings’, Canad. Math. Bull. 11(1) (1968), 2330.CrossRefGoogle Scholar
[13]Hoffman, A. E. and Leavitt, W. G., ‘Properties inherited by the lower radical’, Port. Math. 27 (1968), 6366.Google Scholar
[14]Kelarev, A. V., Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).Google Scholar
[15]Lajos, S. and Szasz, F., ‘On (n,m)-ideals in associative rings’, Publ. Math. Debrecen 25(3–4) (1978), 265273.CrossRefGoogle Scholar
[16]Puczyłowski, E. R., ‘On questions concerning strong radicals of associative rings’, Quaest. Math. 10 (1987), 321338.CrossRefGoogle Scholar
[17]Sulinski, A., Anderson, R. and Divinsky, N., ‘Lower radical properties for associative and alternative rings’, J. Lond. Math. Soc. 41 (1966), 417424.CrossRefGoogle Scholar
[18]Tumurbat, S. and France-Jackson, H., ‘On prime-like radicals’, Bull. Aust. Math. Soc. 82 (2010), 113119.CrossRefGoogle Scholar