Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:32:17.099Z Has data issue: false hasContentIssue false

p-adic methods in the study of Taylor coefficients of rational functions*

Published online by Cambridge University Press:  17 April 2009

A. J. Van Der Poorten
Affiliation:
School of Mathematics and Physics, Macquarie University, North Ryde, New South Wales 2113, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Conference in Honour of Kurt Mahler
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Bombieri, E., “On G-functions”, in Halberstam, H. and Hooley, C. (eds.) Recent Progress in Analytic Number Theory (Academic Press, 2, 1981, 167).Google Scholar
[2]Cassels, J.W.S., “An embedding theorem for fields”. Bull. Austral. Math. Soc. 14 (1976), 193198. Addendum, Bull. Austral. Math. Soc. 14 (1976), 479–480.CrossRefGoogle Scholar
[3]Cantor, D.G., ”On arithmetic properties of the Taylor series of rational functions II”, Pacific J. Math. 41 (1972), 329334.CrossRefGoogle Scholar
[4]Polya, G., “Arithmetische Eigenschaften der Reihenentwicklungen rationaler Functionen”, J. für die reine u. angew Math. 151 (1920), 131.Google Scholar
[5]Poorten, A.J. van der and Schlickewei, H.P., “The growth conditions for recurrence sequences”, Invent. Math., to appear.Google Scholar