No CrossRef data available.
Article contents
PARTITIONS OF $\mathbb {Z}_m$ WITH IDENTICAL REPRESENTATION FUNCTION
Published online by Cambridge University Press: 22 September 2020
Abstract
For a given set $S\subseteq \mathbb {Z}_m$ and $\overline {n}\in \mathbb {Z}_m$ , let $R_S(\overline {n})$ denote the number of solutions of the equation $\overline {n}=\overline {s}+\overline {s'}$ with ordered pairs $(\overline {s},\overline {s'})\in S^2$ . We determine the structure of $A,B\subseteq \mathbb {Z}_m$ with $|(A\cup B)\setminus (A\cap B)|=m-2$ such that $R_{A}(\overline {n})=R_{B}(\overline {n})$ for all $\overline {n}\in \mathbb {Z}_m$ , where m is an even integer.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
Footnotes
This work was supported by the National Natural Science Foundation of China, Grant No. 11771211. The first author is also supported by the Project of Graduate Education Innovation of Jiangsu Province, Grant No. KYCX20_1167.