Published online by Cambridge University Press: 21 July 2016
Diophantine problems involving recurrence sequences have a long history. We consider the equation $B_{m}B_{m+d}\cdots B_{m+(k-1)d}=y^{\ell }$ in positive integers $m,d,k,y$ with $\gcd (m,d)=1$ and $k\geq 2$, where $\ell \geq 2$ is a fixed integer and $B=(B_{n})_{n=1}^{\infty }$ is an elliptic divisibility sequence, an important class of nonlinear recurrences. We prove that the equation admits only finitely many solutions. In fact, we present an algorithm to find all possible solutions, provided that the set of $\ell$th powers in $B$ is given. We illustrate our method by an example.