Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T06:14:22.945Z Has data issue: false hasContentIssue false

Periods for triangular maps

Published online by Cambridge University Press:  17 April 2009

Lluís Alsedà
Affiliation:
Departament de Mathemàtiques, Universitat Autònoma de Barcelona, 08193 – Bellaterra, Barcelona, Spain
Jaume Llibre
Affiliation:
Departament de Mathemàtiques, Universitat Autònoma de Barcelona, 08193 – Bellaterra, Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the sets of periods of triangular maps on a cartesian product of arbitrary spaces. As a consequence we extend Kloeden's Theorem (in a 1979 paper) to a class of triangular maps on cartesian products of intervals and circles. We also show that, in some sense, this is the more general situation in which the Sharkovskiĭ ordering gives the periodic structure of triangular maps.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Alsedà, L., Baldwin, S., Llibre, J., Swanson, R. and Szlenk, W., ‘Minimal sets of periods for torus maps via Nielsen numbers’, (preprint 1991).Google Scholar
[2]Alsedà, L. and Llibre, J., ‘A note on the set of periods for continuous maps of the circle which have degree one’, Proc. Amer. Math. Soc. 93 (1985), 133138.CrossRefGoogle Scholar
[3]Alsedà, L., Llibre, J. and Misiurewicz, M., ‘Periodic orbits of maps of Y’, Trans. Amer. Math. Soc. 313 (1989), 475538.Google Scholar
[4]Alsedà, L., Llibre, J. and Misiurewicz, M., ‘Combinatorial dynamics and entropy in dimension one’, World Scientific (to appear).Google Scholar
[5]Alsedà, L. and Moreno, J.M., ‘Linear orderings and the full periodicity kernel for the n–star’, J. Math. Anal. Appl. (to appear).Google Scholar
[6]Baldwin, S., ‘An extension of Šarkovskiĭ's Theorem to the n–od’, Ergodic Theory Dynamical Systems 11 (1991), 249271.CrossRefGoogle Scholar
[7]Block, L., ‘Periods of periodic points of maps of the circle which have a fixed point’, Proc. Amer. Math. Soc. 82 (1981), 481486.CrossRefGoogle Scholar
[8]Block, L., Guckenheimer, J., Misiurewicz, M. and Young, L.S., ‘Periodic points and topological entropy of one dimensional maps’, in Global theory of dynamical systems, Lecture Notes in Math. 819 (Springer, Berlin, Heidelberg, New York, 1980), pp. 1834.CrossRefGoogle Scholar
[9]Casasayas, J., Llibre, J. and Nunes, A., ‘Periodic points of transversal maps’, (preprint, UAB 1991).Google Scholar
[10]Efremova, L.S., ‘Periodic orbits and a degree of a continuous map of a circle’, (in Russian), Differential Integral Equations (Gor'kiĭ) 2 (1978), 109115.Google Scholar
[11]Kloeden, P.E., ‘On Sharkovsky's cycle coexistence ordering’, Bull. Austral. Math. Soc. 20 (1979), 171177.CrossRefGoogle Scholar
[12]Llibre, J., ‘A note on the set of periods for Klein bottle maps’, Pacific J. Math, (to appear).Google Scholar
[13]Misiurewicz, M., ‘Periodic points of maps of degree one of a circle’, Ergodic Theory Dynamical Systems 2 (1982), 221227.Google Scholar
[14]Sharkovskiĭ, A.N., ‘Co-existence of the cycles of a continuous mapping of the line into itself’, (in Russian), Ukrain. Mat. Zh. 16 (1964), 6171.Google Scholar