Article contents
QUADRILATERAL-TREE PLANAR RAMSEY NUMBERS
Published online by Cambridge University Press: 30 January 2018
Abstract
For two given graphs $G_{1}$ and $G_{2}$, the planar Ramsey number $PR(G_{1},G_{2})$ is the smallest integer $N$ such that every planar graph $G$ on $N$ vertices either contains $G_{1}$, or its complement contains $G_{2}$. Let $C_{4}$ be a quadrilateral, $T_{n}$ a tree of order $n\geq 3$ with maximum degree $k$, and $K_{1,k}$ a star of order $k+1$. We show that $PR(C_{4},T_{n})=\max \{n+1,PR(C_{4},K_{1,k})\}$. Combining this with a result of Chen et al. [‘All quadrilateral-wheel planar Ramsey numbers’, Graphs Combin.33 (2017), 335–346] yields exact values of all the quadrilateral-tree planar Ramsey numbers.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
Footnotes
The first author is partially supported by NSFC under grant number 11601176 and NSF of Hubei Province under grant number 2016CFB146; the second author is partially supported by NSFC under grant numbers 11671198 and 11571168; the third author is partially supported by NSFC under grant number 11601527.
References
- 1
- Cited by