Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T09:02:46.626Z Has data issue: false hasContentIssue false

A question from the Kourovka notebook on formation products

Published online by Cambridge University Press:  17 April 2009

A. Ballester-Bolinches
Affiliation:
Departament d'Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain, e-mail: Adolfo.Ballester@uv.es, clacalo@alumni.uv.es
Clara Calvo
Affiliation:
Departament d'Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain, e-mail: Adolfo.Ballester@uv.es, clacalo@alumni.uv.es
R. Esteban-Romero
Affiliation:
Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain, e-mail: resteban@mat.upv.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown in this paper that if  is a class of simple groups such that π() = char , the -saturated formation ℌ generated by a finite group cannot be expressed as the Gaschütz product  ∘  of two non--saturated formations if ℌ ≠ . It answers some open questions on products of formations. The relation between ω-saturated and -saturated formations is also discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Ballester-Bolinches, A., Calvo, C. and Esteban-Romero, R., ‘On -saturated formations of finite groups’, preprint.Google Scholar
[2]Ballester-Bolinches, A. and Pérez-Ramos, M.D., ‘Some questions of the Kourovka Notebook concerning formation products’, Comm. Algebra 26 (1998), 15811587.CrossRefGoogle Scholar
[3]Ballester-Bolinches, A. and Shemetkov, L.A., ‘On lattices of p-local formations of finite groups’, Math. Nachr. 186 (1997), 5765.CrossRefGoogle Scholar
[4]Doerk, K. and Hawkes, T.., Finite soluble groups, De Gruyter Expositions in Mathematics 4 (Walter de Gruyter, Berlin, New York, 1992).CrossRefGoogle Scholar
[5]Förster, P., ‘Projective Klassen endlicher Gruppen’, Publ. Sec. Mat. Univ. Autònoma Barcelona 29 (1985), 3976.Google Scholar
[6]Guo, W., The theory of classes of groups (Kluwer Academic Publishers, Dordrecht, 2000).Google Scholar
[7]Mazurov, V.D. and Khukhro, E.I., editors, The Kourovka Notebook (unsolved problems in group theory), 12th edition (Russian Academy of Sciences, Siberian Division, Institute of Mathematics, Novosibirsk, 1992).Google Scholar
[8]Mazurov, V.D. and Khukhro, E.I., editors, The Kourovka Notebook (unsolved problems in group theory), 14th edition (Russian Academy of Sciences, Siberian Division, Institute of Mathematics, Novosibirsk, 1999).Google Scholar
[9]Shemetkov, L.A., ‘On the product of formations’, Dokl. Akad. Nauk BSSR 28 (1984), 101103.Google Scholar
[10]Skiba, A.N., ‘On nontrivial factorisations of a one-generated local formation of finite groups’, Contemp. Math. 131 (1992), 363374.CrossRefGoogle Scholar
[11]Skiba, A.N. and Shemetkov, L.A., ‘On partially local formations’, Dokl. Akad. Nauk Belarusi 39 (1995), 911.Google Scholar
[12]Skiba, A.N. and Shemetkov, L.A., ‘Multiply ω-local formations and Fitting classes of finite groups’, Siberian Adv. Math. 10 (2000), 130.Google Scholar
[13]Vishnevskaya, T.R., ‘On factorizations of one-generated p-local formations’, Izv. Gomel. Gos. Univ. Im. F. Skoriny Vopr. Algebry 3 (2000), 8892.Google Scholar