Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T19:44:19.438Z Has data issue: false hasContentIssue false

Regular polygons and transfinite diameter

Published online by Cambridge University Press:  17 April 2009

Michel Grandcolas
Affiliation:
UFR MIM, Département de Mathématiques, Université de Metz, Ile du Saulcy, 57045 Metz Cédex 01France e-mail: grandcol@poncelet.univ-metz.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the behaviour of the transfinite diameter of regular polygons of fixed diameter, as a function of the number of their vertices.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper (Chelsea Publishing Company, Bronx, N.Y., 1971).Google Scholar
[2]Langevin, M., Reyssat, E. and Rhin, G., ‘Diamètres transfinis et problèmes de Favard’, Ann. Inst. Fourier Grenoble 38 (1988), 116.Google Scholar
[3]Langevin, M., ‘Solutions des problèmes de Favard’, Ann. Inst. Fourier Grenoble 38 (1988), 110.Google Scholar
[4]Langevin, M., ‘Approche géométrique du problème de Favard’, C.R. Acad. Sci. Paris Ser. I Math. 304 (1987), 245248.Google Scholar
[5]Lloyd-Smith, C.W., Problems on the distribution of conjugates of algebraic numbers, (Ph.D. Thesis) (Adelaide, SA, 1980).Google Scholar
[6]Grandcolas, M., ‘Isoperimetric inequality on the t3-diameter’, (prepublication de l'université de Metz).Google Scholar
[7]Grandcolas, M., ‘Diameters of complete sets of conjugate algebraic integers of small degree’, Math. Comp. 67 (1998), 821831.Google Scholar
[8]Grandcolas, M., ‘Weighted diameters of complete sets of conjugate algebraic integers’, Bull. Austral. Math. Soc. 57 (1998), 2536.CrossRefGoogle Scholar
[9]Polya-Szegö, , Isoperimetric inequalities in mathematical physics, Annals of Math. Studies 27 (Princeton University Press, Princeton, N.J., 1951).Google Scholar
[10]Hille, E., Analytic function theory 1, Introduction to Higher Mathematics (Ginn & Co., Boston, 1959).Google Scholar