We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Anh, L. Q. and Khanh, P. Q., ‘On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems’, J. Math. Anal. Appl.321 (2006), 308–315.Google Scholar
[2]
Anh, L. Q., Kruger, A. Y. and Thao, N. H., ‘On Hölder calmness of solution mappings in parametric equilibrium problems’, TOP22 (2014), 331–342.CrossRefGoogle Scholar
[3]
Bauschke, H. H. and Borwein, J. M., ‘On projection algorithms for solving convex feasibility problems’, SIAM Rev.38 (1996), 367–426.CrossRefGoogle Scholar
[4]
Bauschke, H. H. and Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (Springer, New York, 2011).CrossRefGoogle Scholar
[5]
Dontchev, A. L. and Rockafellar, R. T., Implicit Functions and Solution Mappings. A View from Variational Analysis, Springer Monographs in Mathematics (Springer, Dordrecht, 2009).CrossRefGoogle Scholar
[6]
Drusvyatskiy, D., Ioffe, A. D. and Lewis, A. S., ‘Transversality and alternating projections for nonconvex sets’, Found. Comput. Math.15 (2015), 1637–1651.Google Scholar
[7]
Hesse, R. and Luke, D. R., ‘Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems’, SIAM J. Optim.23 (2013), 2397–2419.CrossRefGoogle Scholar
[8]
Ioffe, A. D., ‘Metric regularity and subdifferential calculus’, Russian Math. Surveys55 (2000), 501–558.Google Scholar
[9]
Ioffe, A. D., ‘On regularity concepts in variational analysis’, J. Fixed Point Theory Appl.8 (2010), 339–363.Google Scholar
[10]
Ioffe, A. D., ‘Regularity on a fixed set’, SIAM J. Optim.21 (2011), 1345–1370.CrossRefGoogle Scholar
[11]
Ioffe, A. D., ‘Nonlinear regularity models’, Math. Program.139 (2013), 223–242.Google Scholar
[12]
Khanh, P. Q., Kruger, A. Y. and Thao, N. H., ‘An induction theorem and nonlinear regularity models’, SIAM J. Optim.25 (2015), 2561–2588.CrossRefGoogle Scholar
[13]
Kruger, A. Y., ‘About regularity of collections of sets’, Set-Valued Anal.14 (2006), 187–206.Google Scholar
[14]
Kruger, A. Y., ‘About stationarity and regularity in variational analysis’, Taiwanese J. Math.13 (2009), 1737–1785.CrossRefGoogle Scholar
[15]
Kruger, A. Y. and Thao, N. H., ‘About uniform regularity of collections of sets’, Serdica Math. J.39 (2013), 287–312.Google Scholar
[16]
Kruger, A. Y. and Thao, N. H., ‘About [q]-regularity properties of collections of sets’, J. Math. Anal. Appl.416 (2014), 471–496.Google Scholar
[17]
Kruger, A. Y. and Thao, N. H., ‘Quantitative characterizations of regularity properties of collections of sets’, J. Optim. Theory Appl.164 (2015), 41–67.CrossRefGoogle Scholar
[18]
Kruger, A. Y. and Thao, N. H., ‘Regularity of collections of sets and convergence of inexact alternating projections’, J. Convex Anal.23 (2016), to appear.Google Scholar
[19]
Lewis, A. S., Luke, D. R. and Malick, J., ‘Local linear convergence of alternating and averaged projections’, Found. Comput. Math.9 (2009), 485–513.CrossRefGoogle Scholar
[20]
Lewis, A. S. and Malick, J., ‘Alternating projections on manifolds’, Math. Oper. Res.33 (2008), 216–234.Google Scholar
[21]
Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications, Grundlehren der mathematischen Wissenschaften (Springer, New York, 2006).Google Scholar
[22]
Noll, D. and Rondepierre, A., ‘On local convergence of the method of alternating projections’, Found. Comput. Math. (2015), doi:10.1007/s10208-015-9253-0.Google Scholar
[23]
Rockafellar, R. T. and Wets, R. J., Variational Analysis, Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1998).Google Scholar