Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T02:34:28.337Z Has data issue: false hasContentIssue false

Rendezvous numbers in normed spaces

Published online by Cambridge University Press:  17 April 2009

Bálint Farkas
Affiliation:
Technische Universität Darmstadt, Fachbereich Mathematik AG4, Schloßgartenstraße 7, D-64289 Darmstadt, Germany, e-mail: farkas@mathematik.tu-darmstadt.de
Szilárd György Révész
Affiliation:
Alfréd Rényi Institute Hungarian Academy of Sciences, Reáltanoda u. 13–15, H-1053, Budapest, Hungary, e-mail: revesz@renyi.hu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In previous papers, we used abstract potential theory, as developed by Fuglede and Ohtsuka, to a systematic treatment of rendezvous numbers. We considered Chebyshev constants and energies as two variable set functions, and introduced a modified notion of rendezvous intervals which proved to be rather nicely behaved even for only lower semicontinuous kernels or for not necessarily compact metric spaces.

Here we study the rendezvous and average numbers of possibly infinite dimensional normed spaces. It turns out that very general existence and uniqueness results hold for the modified rendezvous numbers in all Banach spaces. We also observe the connections of these magical numbers to Chebyshev constants, Chebyshev radius and entropy. Applying the developed notions with the available methods we calculate the rendezvous numbers or rendezvous intervals of certain concrete Banach spaces. In particular, a satisfactory description of the case of Lp spaces is obtained for all p > 0.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Anagnostopoulos, V. and Révész, Sz. Gy., ‘Polarization constants for products of linear functionals over ℝ2 and ℂ2 and Chebyshev constants of the unit sphere’, Publ. Math. Debrecen (to appear).Google Scholar
[2]Baronti, M., Casini, E. and Papini, P.L., ‘On average distances and the geometry of Banach spaces’, Nonlinear Anal. 42 (2000), 533541.CrossRefGoogle Scholar
[3]Borwein, J. and Kneer, L., ‘The Hausdorff metric and Chebyshev centres,’ J. Approx. Theory 28 (1980), 366376.CrossRefGoogle Scholar
[4]Cleary, J.M., Morris, S.A. and Yost, D., ‘Numerical geometry - numbers for shapes,’ Amer. Math. Monthly 93 (1986), 260275.CrossRefGoogle Scholar
[5]Farkas, B. and Nagy, B., ‘Transfinite diameter, Chebyshev constant, and capacity on locally compact spaces’, Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 7 (2004), 10.Google Scholar
[6]Farkas, B. and Révész, Sz.Gy., ‘How magical rendezvous numbers are explained by potential theory?’, Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 2 (2005), 21.Google Scholar
[7]Farkas, B. and Révész, Sz.Gy., ‘Rendezvous numbers of metric spaces - a potential theoretic approach’, Arch. Math. (Basel) (to appear).Google Scholar
[8]Fekete, M., ‘Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzahligen Koeffizienten’, Math. Z. 17 (1923), 228249.CrossRefGoogle Scholar
[9]Fuglede, B., ‘On the theory of potentials in locally compact spaces’, Acta Math. 103 (1960), 139215.CrossRefGoogle Scholar
[10]Fuglede, B., ‘Le théorème du minimax et la théorie fine du potentiel,’ Ann Inst. Fourier (Grenoble) 15 (1965), 6587.CrossRefGoogle Scholar
[11]García-Vázquez, J.C. and Villa, R., ‘The average distance property of the spaces and ’, Arch. Math. 76 (2001), 222230.CrossRefGoogle Scholar
[12]Garkavi, A.L., ‘On the Chebyshev centre and convex hull of a set,’ Uspekhi Mat. Nauk 19 (1964), 139145.Google Scholar
[13]Gross, O., ‘The rendezvous value of a metric space’, in Advances in Game Theory, Ann. of Math. Studies 52 (Princeton University Press, N.J., 1964), pp. 4953.Google Scholar
[14]Hinrichs, A., ‘The average distance property of classical Banach spaces’, Bull. Aust. Math. Soc. 62 (2000), 119134.CrossRefGoogle Scholar
[15]Hinrichs, A. and Wenzel, J., ‘The average distance property of classical Banach spaces II’, Bull. Aust. Math. Soc. 65 (2002), 511520.CrossRefGoogle Scholar
[16]Lin, P.K., ‘The average distance property of Banach spaces’, Arch. Math. 68 (1997), 496502.CrossRefGoogle Scholar
[17]Ohtsuka, M., ‘On potentials in locally compact spaces’, J. Sci. Hiroshima Univ. Ser. A-I Math. 25 (1961), 135352.Google Scholar
[18]Ohtsuka, M., ‘On various definitions of capacity and related notions’, Nagoya Math. J. 30 (1967), 121127.CrossRefGoogle Scholar
[19]Pappas, A. and Révész, Sz. Gy., ‘Linear polarization constants of Hilbert spaces’, J. Math. Anal. Appl. 300 (2004), 129146.CrossRefGoogle Scholar
[20]Révész, Sz. Gy. and Sarantopoulos, Y., ‘Plank problems, polarization, and Chebyshev constants’, J. Korean Math. Soc. 41 (2004), 157174.CrossRefGoogle Scholar
[21]Stadje, W., ‘A property of compact, connected spaces’, Arch. Math. 36 (1981), 275280.CrossRefGoogle Scholar
[22]Thomassen, C., ‘The rendezvous number of a symmetric matrix and a compact connected metric space,’ Amer. Math. Monthly 107 (2000), 163166.CrossRefGoogle Scholar
[23]Wolf, R., ‘On the average distance property in finite dimensional real Banach spaces’, Bull. Austral. Math. Soc. 51 (1994), 87101.CrossRefGoogle Scholar
[24]Wolf, R., ‘On the average distance property of spheres in Banach spaces’, Arch. Math. 62 (1994), 338344.CrossRefGoogle Scholar