1 Introduction
Let $a_i, b_i \geq 0$ ( $i=1,2,\ldots $ ). The Hardy–Littlewood–Pólya inequality [Reference Hardy, Littlewood and Pólya3, Theorem 381, page 288] states that
where $p,q>1$ , $1/p+1/q>1$ , $\lambda =2-(1/p+1/q)$ . In 2015, Huang, Li and Yin used the Hardy–Littlewood–Sobolev inequality [Reference Lieb7] to generalise (1.1) to the case of higher dimensions. In addition, they also proved that the best constant can be approximated by the corresponding functional with finite terms [Reference Huang, Li and Yin4].
In 2015, Dou and Zhu in [Reference Dou and Zhu2] established a reversed Hardy–Littlewood–Sobolev inequality:
where $n \geq 1$ and $p,q \in (n/(n-\lambda ),1)$ satisfy $1/p+1/q+\lambda /n=2$ . In addition, they proved the best constant is attained. From this inequality, a reversed discrete inequality in higher dimensions was also deduced in [Reference Lei, Li and Tang5]:
where $f=(f_i)_{i \in \mathbb {Z}^n}$ , $g=(g_j)_{j \in \mathbb {Z}^n}$ , $\lambda <0$ , $n/(n-\lambda )<p,q<1$ and $1/p+1/q+\lambda /n \leq 2$ . When $n=1$ and replacing $\mathbb {Z}^n$ by $\mathbb {N}$ , we denote the best constant by
In 2011, Li and Villavert [Reference Li and Villavert6] proved the Hardy–Littlewood–Pólya inequality with finite terms:
where the constant $K_N$ satisfies
Comparing (1.3) with (1.1) for $p=q=2$ shows that (1.3) is an inequality in the critical case. In contrast to the estimate of $K_N$ above, the best constant for the upper-critical inequality is bounded with respect to N [Reference Huang, Li and Yin4, Lemma 2.2]. The bounds for the best constant are helpful in giving a better understanding of the Coulomb energy in the Thomas–Fermi model describing electron gas and N-body systems [Reference Lieb, Feng, Klauder and Strayer8]. The results in higher dimensions can be found in [Reference Cheng and Li1].
In this paper, we always assume $a_i,b_i \geq 0$ ( $i=1,2,\ldots ,N$ ). We will prove the following reversed Hardy–Littlewood–Pólya inequality with finite terms.
Theorem 1.1. Let $\lambda <0$ and $p,q \in (0,1)$ satisfy $1/p+1/q \leq 2-\lambda $ . Then we can find a constant $L>0$ which only depends on $p,q,\lambda ,N$ such that
Denote the best constant in (1.4) by
Theorem 1.2. Let $\lambda <0$ and $p,q \in ((1-\lambda )^{-1},1)$ satisfy $1/p+1/q \leq 2-\lambda $ . Then $L_{p,q,\lambda ,N} \to L_{p,q,\lambda }$ when $N \to \infty $ .
2 Proof of Theorems 1.1 and 1.2
Proof of Theorem 1.1
Write $a=(a_1,a_2,\ldots ,a_N)$ and $b=(b_1,b_2,\ldots ,b_N)$ . Set
Clearly, $J(a,b) \geq 0$ for all $a,b \in \mathbb {R}_+^N:= \{x=(x_1,x_2,\ldots ,x_N) : x_i \geq 0, i=1,2,\ldots ,N\}$ . However,
is compact in $\mathbb {R}_+^N \times \mathbb {R}_+^N$ and hence the minimisation problem (1.5) has solutions in $\mathbb {S}(N)$ . Thus, we can find $(a(N),b(N)) \in \mathbb {S}(N)$ such that $J(a(N),b(N)) =0$ . We call $(a(N),b(N))$ the minimiser of J. Therefore, both the partial derivatives of J are equal to zero at $(a(N),b(N))$ . Namely,
for any $(a,b) \in \mathbb {R}_+^N \times \mathbb {R}_+^N$ . From this result, by simple calculation, we see that
Noting $(a(N),b(N))\neq (0,0)$ (because $(a(N),b(N))\in \mathbb {S}(N)$ ), from (2.1) we see that
Therefore, $L_{p,q,\lambda ,N}>0$ .
Next, we prove that $L_{p,q,\lambda ,N}$ has a positive lower bound which is independent of N. Multiplying (2.1) $_1$ by $a(N)_i$ and summing from $1$ to N gives
Write
Since $(a(N),b(N)) \in \mathbb {S}(N)$ ,
From (2.2) and (1.2), it follows that
Therefore, $L_{p,q,\lambda ,N}>0$ with the lower bound (2.3). This proves (1.4).
Remark 2.1. We claim that
Without loss of generality, we can assume $a(N)_1=\min _{1 \leq i \leq N} \{a(N)_i,b(N)_i\}$ . From (2.1),
However, since $\mathbb {S}(N) \subset \mathbb {S}(N+1)$ , it follows that $L_{p,q,\lambda ,N}$ is nonincreasing with respect to N. Therefore, $L_{p,q,\lambda ,N} \leq L_{p,q,\lambda ,1}$ . Taking $a_1=b_1=1$ , we see that $(a_1,b_1) \in \mathbb {S}(1)$ and hence $L_{p,q,\lambda ,1} \leq a_1b_1=1$ . This gives the upper bound
Combining (2.5) with (2.4) yields
This implies our claim.
Proof of Theorem 1.2
By (1.2), we can find a minimising sequence $(a^{(m)},b^{(m)}) \in \mathbb {S}$ such that
The convergence of this series implies
when $N_m>m$ is sufficiently large. Here,
and $b_{i}^{(m),N_m}$ is defined by the same truncation. Since $(a^{(m)},b^{(m)}) \in \mathbb {S}$ ,
when $N_m>m$ is sufficiently large. Therefore, noting that
from (1.5), (2.6) and (2.7), we deduce
for large $N_m$ . Letting $m \to \infty $ and combining with (2.3) completes the proof.
Acknowledgement
The authors thank the anonymous referee very much for the useful suggestions.