Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T11:13:43.659Z Has data issue: false hasContentIssue false

SMALL ESSENTIAL SPECTRAL RADIUS PERTURBATIONS OF OPERATORS WITH TOPOLOGICAL UNIFORM DESCENT

Published online by Cambridge University Press:  30 August 2011

QINGPING ZENG*
Affiliation:
School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, PR China (email: zqpping2003@163.com)
HUAIJIE ZHONG
Affiliation:
School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, PR China
ZHENYING WU
Affiliation:
Fuzhou Strait Vocation Technological College, Fuzhou 350014, PR China
*
For correspondence; e-mail: zqpping2003@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider small essential spectral radius perturbations of operators with topological uniform descent—small essential spectral radius perturbations which cover compact, quasinilpotent and Riesz perturbations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

This work has been supported by the Specialized Research Fund for the Doctoral Program of Higher Education (2010350311001) and the Natural Science Foundation of Fujian Province (NO. 2009J01005).

References

[1]Aiena, P., Fredholm and Local Spectral Theory, with Application to Multipliers (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
[2]Aiena, P., Biondi, M. T. and Carpintero, C., ‘On Drazin invertibility’, Proc. Amer. Math. Soc. 136(8) (2008), 28392848.CrossRefGoogle Scholar
[3]Bel Hadj Fredj, O., Burgos, M. and Oudghiri, M., ‘Ascent spectrum and essential ascent spectrum’, Studia Math. 187(1) (2008), 5973.CrossRefGoogle Scholar
[4]Berkani, M., ‘Restrition of operator to the range of its power’, Studia Math. 140(2) (2000), 163175.CrossRefGoogle Scholar
[5]Berkani, M. and Sarih, M., ‘On semi-B-Fredholm operators’, Glasg. Math. J. 43(3) (2001), 457465.CrossRefGoogle Scholar
[6]Burgos, M., Kaidi, A., Mbekhta, M. and Oudghiri, M., ‘The descent spectrum and perturbations’, J. Operator Theory 56(2) (2006), 259271.Google Scholar
[7]Fillmore, P. A. and Williams, J. P., ‘On operator ranges’, Adv. Math. 7(3) (1971), 254281.CrossRefGoogle Scholar
[8]Grabiner, S., ‘Ranges of products of operators’, Canad. J. Math. XXVI(6) (1974), 14301441.CrossRefGoogle Scholar
[9]Grabiner, S., ‘Uniform ascent and descent of bounded operators’, J. Math. Soc. Japan 34(2) (1982), 317337.CrossRefGoogle Scholar
[10]Harte, R. E., ‘On Kato non-singularity’, Studia Math. 177(2) (1996), 107114.CrossRefGoogle Scholar
[11]Harte, R. E. and Wickstead, A., ‘Upper and lower Fredholm spectra II’, Math. Z. 154(3) (1997), 253256.CrossRefGoogle Scholar
[12]Kaashoek, M. A., ‘Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor’, Math. Ann. 172(2) (1967), 105115.CrossRefGoogle Scholar
[13]Kordula, V. and Müller, V., ‘The distance from the Apostol spectrum’, Proc. Amer. Math. Soc. 124(10) (1996), 30553061.CrossRefGoogle Scholar
[14]Kordula, V., Müller, V. and Rakočevič, V., ‘On the semi-Browder spectrum’, Studia Math. 123(1) (1997), 113.Google Scholar
[15]Makai, E. and Zemánek, J., ‘The surjectivity radius, packing numbers and boundedness below of linear operators’, Integral Equations Operator Theory 6(1) (1983), 372384.CrossRefGoogle Scholar
[16]Mbekhta, M. and Müller, V., ‘On the axiomatic theory of spectrum II’, Studia Math. 119(2) (1996), 129147.CrossRefGoogle Scholar
[17]Pietsch, A., Operator Ideals (North Holland, Amsterdam–New York–Oxford, 1980).Google Scholar
[18]Rakočevič, V., ‘Semi Browder operators and perturbations’, Studia Math. 122(2) (1997), 131137.CrossRefGoogle Scholar
[19]Rakočevič, V., ‘Generalized spectrum and commuting compact perturbations’, Proc. Edinb. Math. Soc. 36(2) (1993), 197209.CrossRefGoogle Scholar
[20]Zemánek, J., ‘The stability radius of a semi-Fredholm operator’, Integral Equations Operator Theory 8(1) (1985), 137144.CrossRefGoogle Scholar
[21]Živković-Zlatanović, S. Č., Djordjević, D. S. and Harte, R. E., ‘Left–right Browder and left–right Fredholm operators’, Integral Equations Operator Theory 69(3) (2011), 347363.CrossRefGoogle Scholar