Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T02:37:15.615Z Has data issue: false hasContentIssue false

STABLE, ALMOST STABLE AND ODD POINTS OF DYNAMICAL SYSTEMS

Published online by Cambridge University Press:  26 April 2017

RYSZARD J. PAWLAK
Affiliation:
Faculty of Mathematics and Computer Science, Łódź University, Banacha 22, 90-238 Łódź, Poland email rpawlak@math.uni.lodz.pl
ANNA LORANTY*
Affiliation:
Faculty of Mathematics and Computer Science, Łódź University, Banacha 22, 90-238 Łódź, Poland email loranta@math.uni.lodz.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Alsedá, L., Cushing, J. M., Elaydi, S. and Pinto, A. A., Difference Equations, Discrete Dynamical Systems and Applications: ICDEA, Barcelona, Spain, July 2012, Springer Proceedings in Mathematics and Statistics, 180 (Springer, Berlin, 2016).Google Scholar
Bruckner, A. M. and Ceder, J. G., ‘Darboux continuity’, Jahresber. Dtsch. Math.-Ver. 67 (1965), 93117.Google Scholar
Elaydi, S. and Sacker, R. J., ‘Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing–Henson conjectures’, J. Differential Equations 208 (2005), 258273.Google Scholar
Kolyada, S. and Snoha, L., ‘Topological entropy of nonautonomous dynamical systems’, Random Comput. Dyn. 4(2–3) (1996), 205233.Google Scholar
Korczak-Kubiak, E., Loranty, A. and Pawlak, R. J., ‘On local problem of entropy for functions from Zahorski classes’, Tatra Mt. Math. Publ. 65(1) (2016), 2335.Google Scholar
Korczak-Kubiak, E., Loranty, A. and Pawlak, R. J., ‘On focusing entropy at a point’, Taiwanese J. Math. 20(5) (2016), 11171137.Google Scholar
Korczak-Kubiak, E. and Pawlak, R. J., ‘On approximation by function having a strong entropy point’, Tatra Mt. Math. Publ. 58(1) (2014), 7789.Google Scholar
Li, J. and Ye, X., ‘Recent development of chaos theory in topological dynamics’, Acta Math. Sin. (Engl. Ser.) 32(1) (2016), 83114.CrossRefGoogle Scholar
Loranty, A. and Pawlak, R. J., ‘On some sets of almost continuous functions which locally approximate a fixed function’, Tatra Mt. Math. Publ. 65 (2016), 105118.Google Scholar
Luis, R., Elaydi, S. and Oliveira, H., ‘Nonautonomous periodic systems with Allee effects’, J. Difference Equ. Appl. 16 (2010), 11791196.Google Scholar
Natkaniec, T., ‘Almost continuity. Topical survey’, Real Anal. Exchange 17 (1991/92), 462520.Google Scholar
Pawlak, R. J., ‘Entropy of nonautonomous discrete dynamical systems considered in GTS and GMS’, in: Bulletin de la Société des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations, 66(3) (2016), 1128.Google Scholar
Pawlak, R. J., Loranty, A. and Bąkowska, A., ‘On the topological entropy of continuous and almost continuous functions’, Topol. Appl. 158 (2011), 20222033.Google Scholar
Stallings, J., ‘Fixed point theorem for connectivity maps’, Fund. Math. 47(3) (1959), 249263.Google Scholar
Szuca, P., ‘Sharkovskiĭ’s theorem holds for some discontinuous functions’, Fund. Math. 179 (2003), 2741.Google Scholar
Wilczyński, W., ‘Density topologies’, in: Handbook of Measure Theory (ed. Pap, E.) (Elsevier, Amsterdam, 2002), Ch. 15, 675702.Google Scholar
Yakubu, A.-A. and Castillo-Chavez, C., ‘Interplay between local dynamics and dispersal in discrete-time metapopulation models’, J. Theoret. Biol. 218 (2002), 273288.Google Scholar
Ye, X. and Zhang, G., ‘Entropy points and applications’, Trans. Amer. Math. Soc. 259(12) (2007), 61676186.CrossRefGoogle Scholar