Published online by Cambridge University Press: 17 April 2009
A complex Banach algebra is a complexification of a real Banach algebra if and only if it carries a conjugation operator. We prove a uniqueness theorem concerning strictly real selfconjugate subalgebras of a given complex algebra. An example is given of a complex Banach algebra carrying two distinct but commuting conjugations, whose selfconjugate subalgebras are both strictly real. The class of strictly real Banach algebras is shown to be a variety, and the manner of their generation by suitable elements is proved. A corollary describes some strictly real subalgebras in Hermitian Banach star algebras, including C* algebras.