Article contents
STRONGLY $q$-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR
Published online by Cambridge University Press: 17 November 2015
Abstract
Let $P(n)$ denote the largest prime factor of an integer $n\geq 2$. In this paper, we study the distribution of the sequence $\{f(P(n)):n\geq 1\}$ over the set of congruence classes modulo an integer $b\geq 2$, where $f$ is a strongly $q$-additive integer-valued function (that is, $f(aq^{j}+b)=f(a)+f(b),$ with $(a,b,j)\in \mathbb{N}^{3}$, $0\leq b<q^{j}$). We also show that the sequence $\{{\it\alpha}P(n):n\geq 1,f(P(n))\equiv a\;(\text{mod}~b)\}$ is uniformly distributed modulo 1 if and only if ${\it\alpha}\in \mathbb{R}\!\setminus \!\mathbb{Q}$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2015 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by