No CrossRef data available.
Article contents
THREE STUDIES IN HIGHER CATEGORY THEORY: FIBRATIONS, SKEW-MONOIDAL STRUCTURES AND EXCISION OF EXTREMALS
Part of:
Categories with structure
Published online by Cambridge University Press: 21 July 2016
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Keywords
- Type
- Abstracts of Australasian PhD Theses
- Information
- Bulletin of the Australian Mathematical Society , Volume 94 , Issue 2 , October 2016 , pp. 337 - 338
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
References
Baković, I., ‘Fibrations of bicategories’, http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf, 2012.Google Scholar
Buckley, M., ‘Fibred 2-categories and bicategories’, J. Pure Appl. Algebra
218(6) (2014), 1034–1074.Google Scholar
Buckley, M., ‘A formal verification of the theory of parity complexes’, J. Formaliz. Reason.
8(1) (2015), 1–24.Google Scholar
Buckley, M., ‘The Catalan simplicial set II’, Appl. Categ. Structures
23 (2015), 33 pages.Google Scholar
Buckley, M., Garner, R., Lack, S. and Street, R., ‘The Catalan simplicial set’, Math. Proc. Cambridge Philos. Soc.
158(2) (2015), 211–222.Google Scholar
Hermida, C., ‘Some properties of Fib as a fibred 2-category’, J. Pure Appl. Algebra
134(1) (1999), 83–109.Google Scholar
Street, R., ‘Parity complexes’, Cah. Topol. Géom. Différ. Catég.
32(4) (1991), 315–343.Google Scholar
Street, R., ‘Parity complexes: corrigenda’, Cah. Topol. Géom. Différ. Catég.
35(4) (1994), 359–361.Google Scholar
You have
Access