Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:43:24.336Z Has data issue: false hasContentIssue false

THE TOP LEFT DERIVED FUNCTORS OF THE GENERALISED $I$-ADIC COMPLETION

Published online by Cambridge University Press:  04 January 2013

TRAN TUAN NAM*
Affiliation:
Department of Mathematics – Informatics, Ho Chi Minh University of Pedagogy, 280 An Duong Vuong, District 5, Ho Chi Minh City, Vietnam email namtuantran@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the top left derived functors of the generalised $I$-adic completion and obtain equivalent properties concerning the vanishing or nonvanishing of the modules ${L}_{i} {\Lambda }_{I} (M, N)$. We also obtain some results for the sets $\text{Coass} ({L}_{i} {\Lambda }_{I} (M; N))$ and ${\text{Cosupp} }_{R} ({ H}_{i}^{I} (M; N))$.

Type
Research Article
Copyright
Copyright ©2012 Australian Mathematical Publishing Association Inc. 

References

Bartijn, J., Flatness, Completions, Regular Sequences, un Ménage à Trois, Thesis, Utrecht, 1985.Google Scholar
Cuong, N. T. and Nam, T. T., ‘A local homology theory for linearly compact modules’, J. Algebra 319 (2008), 47124737.CrossRefGoogle Scholar
Cuong, N. T. and Nam, T. T., ‘The $I$-adic completion and local homology for Artinian modules’, Math. Proc. Cambridge Philos. Soc. 131 (2001), 6172.CrossRefGoogle Scholar
Cuong, N. T. and Nam, T. T., ‘On the co-localization, co-support and co-associated primes of local homology modules’, Vietnam J. Math. 29 (4) (2001), 359368.Google Scholar
Herzog, J., Komplexe, Auflösungen und Dualität in der localen Algebra (Habilitationsschrift Univ. Regensburg, 1970).Google Scholar
Kirby, D., ‘Dimension and length of artinian modules’, Quart. J. Math. Oxford 2 (41) (1990), 419429.CrossRefGoogle Scholar
Macdonald, I. G., ‘Duality over complete local rings’, Topology 1 (1962), 213235.CrossRefGoogle Scholar
Marley, T., ‘The associated primes of local cohomology modules over rings of small dimension’, Manuscripta Math. 104 (2001), 519525.CrossRefGoogle Scholar
Melkersson, L. and Schenzel, P., ‘The co-localization of an Artinian module’, Proc. Edinb. Math. Soc. 38 (1995), 121131.CrossRefGoogle Scholar
Nam, T. T., ‘Left derived functors od the generalized $I$-adic completion and generalized local homology’, Comm. Algebra 38 (2010), 440453.CrossRefGoogle Scholar
Nam, T. T., ‘The finiteness of coassociated primes of generalized local homology modules’, Preprint.Google Scholar
Nam, T. T., ‘Generalized local homology and cohomology for artinian modules’, Algebra Colloquium 19 (1) (2012), 12051212.CrossRefGoogle Scholar
Nam, T. T., ‘Co-support and Coartinian modules’, Algebra Colloq. 15 (1) (2008), 8396.CrossRefGoogle Scholar
Roberts, R. N., ‘Krull dimension for artinian modules over quasilocal commutative rings’, Quart. J. Math. Oxford 26 (3) (1975), 269273.CrossRefGoogle Scholar
Rotman, J. J., An Introduction to Homological Algebra (Academic Press, 1979).Google Scholar
Sharp, R. Y., ‘A method for the study of artinian modules with an application to asymptotic behavior’, Commutative Algebra, Math. Sciences Research Inst. Publ., 15 (Springer, 1989), pp. 443–465.CrossRefGoogle Scholar
Yassemi, S., ‘Coassociated primes’, Comm. Algebra 23 (1995), 14731498.CrossRefGoogle Scholar
Zöschinger, H., ‘Linear-kompakte Moduln über noetherschen Ringen’, Arch. Math. 41 (1983), 121130.CrossRefGoogle Scholar