Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:45:38.710Z Has data issue: false hasContentIssue false

Two hyperbolic Schwarz lemmas

Published online by Cambridge University Press:  17 April 2009

L. Bernal-González
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Apdo. 1160, Avenida Reina Mercedes, 41080 Sevilla, Spain, e-mail: lbernal@us.es
M. C. Calderón-Moreno
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Apdo. 1160, Avenida Reina Mercedes, 41080 Sevilla, Spain, e-mail: mccm@us.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, a sharp version of the Schwarz–Pick Lemma for hyperbolic derivatives is provided for holomorphic selfmappings on the unit disk with fixed multiplicity for the zero at the origin. This extends a recent result due to Beardon. A property of preserving hyperbolic distances also studied by Beardon is here completely characterised.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Beardon, A.F., ‘The Schwarz–Pick Lemma for derivatives’, Proc. Amer. Math. Soc. 125 (1997), 32553256.CrossRefGoogle Scholar
[2]Dieudonné, J., ‘Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe’, Ann. Sci. Ecole Norm. Sup. 48 (1931), 247358.CrossRefGoogle Scholar
[3]Donoghe, W.F. Jr., Distributions and Fourier transforms (Academic Press, New York, 1966).Google Scholar