Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:10:42.882Z Has data issue: false hasContentIssue false

UNIVALENCE CRITERIA AND ANALOGUES OF THE JOHN CONSTANT

Published online by Cambridge University Press:  12 December 2012

YONG CHAN KIM
Affiliation:
Department of Mathematics Education, Yeungnam University, 214-1 Daedong Gyongsan 712-749, Korea email kimyc@ynu.ac.kr
TOSHIYUKI SUGAWA*
Affiliation:
Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $p(z)= z{f}^{\prime } (z)/ f(z)$ for a function $f(z)$ analytic on the unit disc $\mid z\mid \lt 1$ in the complex plane and normalised by $f(0)= 0, {f}^{\prime } (0)= 1$. We provide lower and upper bounds for the best constants ${\delta }_{0} $ and ${\delta }_{1} $ such that the conditions ${e}^{- {\delta }_{0} / 2} \lt \mid p(z)\mid \lt {e}^{{\delta }_{0} / 2} $ and $\mid p(w)/ p(z)\mid \lt {e}^{{\delta }_{1} } $ for $\mid z\mid , \mid w\mid \lt 1$ respectively imply univalence of $f$ on the unit disc.

Type
Research Article
Copyright
Copyright ©2012 Australian Mathematical Publishing Association Inc. 

References

Becker, J., ‘Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen’, J. reine angew. Math. 255 (1972), 2343.Google Scholar
Curtiss, J. H., ‘Polynomials and the Faber series’, Amer. Math. Monthly 78 (1971), 577596.Google Scholar
Gevirtz, J., ‘An upper bound for the John constant’, Proc. Amer. Math. Soc. 83 (1981), 476478.Google Scholar
Gevirtz, J., ‘On extremal functions for John constants’, J. Lond. Math. Soc. (2) 39 (1989), 285298.Google Scholar
Hummel, J. A., ‘The Grunsky coefficients of a schlicht function’, Proc. Amer. Math. Soc. 15 (1964), 142150.Google Scholar
Jabotinsky, E., ‘Universal relations between the elements of Grunsky’s matrix’, J. Anal. Math. 17 (1966), 411417.Google Scholar
John, F., ‘On quasi-isometric mappings, II’, Comm. Pure Appl. Math. 22 (1969), 265278.Google Scholar
Kim, Y. C., Ponnusamy, S. and Sugawa, T., ‘Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives’, J. Math. Anal. Appl. 299 (2004), 433447.Google Scholar
Kim, Y. C. and Sugawa, T., ‘On univalence of the power deformation $z\mathop{(f(z)/ z)}\nolimits ^{c} $’, Chinese Ann. Math. Ser. B. arXiv:1112.6237.Google Scholar
Pommerenke, Ch., Univalent Functions (Vandenhoeck & Ruprecht, Göttingen, 1975).Google Scholar
Todorov, P. G., ‘Three explicit formulas for the Taylor coefficients of the function $\mathop{(\frac{1- z}{1- xz} )}\nolimits ^{\lambda } $’, Abh. Math. Semin Univ. Hamb. 65 (1995), 147153.Google Scholar
Yamashita, S., ‘On the John constant’, Math. Z. 161 (1978), 185188.Google Scholar