Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:54:23.754Z Has data issue: false hasContentIssue false

Vacuum spacetimes with a spacelike Killing vector

Published online by Cambridge University Press:  17 April 2009

Duong Phan
Affiliation:
School of Mathematics and Statistics The University of Sydney, New South Wales 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Fackerell, E.D. and Kerr, R., ‘Einstein vacuum field equations with a single non-null Killing vector’, Gen. Relativity Gravitation 3 (1991), 861876.CrossRefGoogle Scholar
[2]Geroch, R., ‘A method for generating solutions of Einstein's equations’, J. Math. Phys. 12 (1971), 918924.CrossRefGoogle Scholar
[3]Hall, G.S., Morgan, T. and Perjés, Z., ‘Three-dimensional spacetimes’, Gen. Relativity Gravitation 19 (1987), 11371147.CrossRefGoogle Scholar
[4]Hearn, A.C., REDUCE User's manual version 3.3 (The RAND Corporation, Santa Monica, 1988).Google Scholar
[5]Ince, E.L., Ordinary differential equations (Dover Publications Inc., 1956).Google Scholar
[6]Kersten, P.H.M., Infinitesimal symmetries: a computational approach, Ph.D. thesis (University of Twente, Enschede, The Netherlands, 1985).Google Scholar
[7]Kramer, D., Stephani, H., Herlt, E. and MacCallum, M., Exact solutions of Einstein's field equations (Cambridge University Press, 1980).Google Scholar
[8]Olver, P.W., Applications of Lie groups to differential equations (Springer-Verlag, Berlin, Heidelberg, New York, 1986).CrossRefGoogle Scholar
[9]Ovsiannikov, L.V., Group analysis of differential equations (Academic Press, 1982).Google Scholar
[10]Perjés, Z., ‘SU(1,1) spin coefficients’, Acta Phys. Acad. Scientiarum Hungaricae 32 (1972), 207220.CrossRefGoogle Scholar