Article contents
WEAK HAAGERUP PROPERTY OF$W^{\ast }$-CROSSED PRODUCTS
Published online by Cambridge University Press: 31 August 2017
Abstract
We show that if $M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$ has the weak Haagerup property, then both $M$ and $\unicode[STIX]{x1D6E4}$ have the weak Haagerup property, and if $\unicode[STIX]{x1D6E4}$ is an amenable group, then the weak Haagerup property of $M$ implies that of $M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$. We also give a condition under which the weak Haagerup property for $M$ and $\unicode[STIX]{x1D6E4}$ implies that of $M\,\bar{\rtimes }_{\unicode[STIX]{x1D6FC}}\,\unicode[STIX]{x1D6E4}$.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 97 , Issue 1 , February 2018 , pp. 119 - 126
- Copyright
- © 2017 Australian Mathematical Publishing Association Inc.
References
- 5
- Cited by