1. Introduction
Let X and Y be normed spaces over $\mathbb {F}\in \{\mathbb {R},\mathbb {C}\}$ , where $\mathbb {R}$ and $\mathbb {C}$ are the fields of real and complex numbers, respectively. Denote $\mathbb {T}=\{\alpha \in \mathbb {F}:|\alpha |=1\}$ . A function $\sigma :X\rightarrow \mathbb {T}$ whose values are of modulus one is called a phase function on X. A mapping ${f: X \rightarrow Y}$ is said to be phase equivalent to another mapping $g: X \rightarrow Y$ if there exists a phase function $\sigma :X\rightarrow \mathbb {T}$ such that $f=\sigma \cdot g$ , that is, $f(x)=\sigma (x)g(x)$ for $x\in X$ .
The celebrated Wigner’s unitary–anti-unitary theorem is particularly important in the mathematical foundations of quantum mechanics. It states that for inner product spaces $(X,\langle \cdot ,\cdot \rangle )$ and $(Y,\langle \cdot ,\cdot \rangle )$ over $\mathbb {F}$ , a mapping $f: X \rightarrow Y$ satisfies
if and only if f is phase equivalent to a linear or anti-linear isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear isometry in the case $\mathbb {F}=\mathbb {R}$ . There are several proofs of this result, see [Reference Almeida and Sharma1, Reference Bargmann2, Reference Gehér4, Reference Győry6, Reference Maksa and Páles13, Reference Rätz18, Reference Turnšek22] to list just some of them. For further generalisations of this fundamental result, we mention the papers [Reference Chevalier3, Reference Gehér5, Reference Molnár15, Reference Qian, Wang, Wu and Yuan17]. Wigner’s theorem is very important and therefore worthy of study from various points of view.
A mapping $f: X \rightarrow Y$ between normed spaces over $\mathbb {F}$ is called a phase-isometry if it satisfies the functional equation
It is worth noting that if X and Y are inner product spaces, then $f: X \rightarrow Y$ satisfies (1.1) if and only if f satisfies (1.2). Indeed, with the substitution $y=x$ , we deduce from either (1.1) or (1.2) that f is norm-preserving. Squaring the norms on both sides of (1.2), it follows that (1.2) holds if and only if
which happens if and only if (1.1) holds. Due to Wigner’s theorem, a mapping between inner product spaces is a phase-isometry if and only if it is phase equivalent to a linear or anti-linear isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear isometry in the case $\mathbb {F}=\mathbb {R}$ .
When X and Y are normed spaces, one can easily see that if $f:X \rightarrow Y$ is phase equivalent to a linear or anti-linear isometry, then f is a phase-isometry. For instance, if $f=\sigma \cdot U$ , where U is a linear isometry and $\sigma :X\rightarrow \mathbb {T}$ is a phase function, then for $x,y\in X$ and $\alpha \in \mathbb {T}$ ,
and then
Similar reasoning applies when U is an anti-linear isometry. Therefore, a natural problem posed by Maksa and Páles [Reference Maksa and Páles13] (the case $\mathbb {F}=\mathbb {R}$ ), and Wang and Bugajewski [Reference Wang and Bugajewski23] (the case $\mathbb {F}=\mathbb {C}$ ), can be restated as the following problem.
Problem 1.1. Under what conditions is every phase-isometry between two normed spaces over $\mathbb {F}$ phase equivalent to a linear or anti-linear isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear isometry in the case $\mathbb {F}=\mathbb {R}$ ?
A normed space X over $\mathbb {F}$ is said to have the Wigner property if for any normed space Y over $\mathbb {F}$ , every surjective phase-isometry $f: X \rightarrow Y$ is phase equivalent to a linear or anti-linear isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear isometry in the case $\mathbb {F}=\mathbb {R}$ .
There have been several recent papers considering Problem 1.1 or the Wigner property in the case $\mathbb {F}=\mathbb {R}$ . For relevant results, please refer to [Reference Huang and Tan7–Reference Ilišević, Omladič and Turnšek9, Reference Ilišević and Turnšek11–Reference Maksa and Páles13, Reference Tan and Huang19–Reference Tan and Zhang21, Reference Wang and Bugajewski23]. In particular, Tan and Huang [Reference Tan and Huang19] proved that smooth real normed spaces have the Wigner property. Further, Ilišević et al. [Reference Ilišević, Omladič and Turnšek9] proved that any real normed spaces have the Wigner property. However, to the best of our knowledge, apart from the case where X and Y are inner product spaces, there has been no progress in addressing Problem 1.1 in the case $\mathbb {F}=\mathbb {C}$ . The aim of this paper is to give a partial solution for the case $\mathbb {F}=\mathbb {C}$ . Specifically, we show that every smooth complex normed space has the Wigner property. As a by-product, we give a Figiel-type result for phase-isometries. Although our paper is interesting in its own right, we hope that it will serve as a stepping stone to show that all complex normed spaces have the Wigner property.
2. Results
In the remainder of this paper, unless otherwise specified, all the normed spaces are over $\mathbb {F}\in \{\mathbb {R},\mathbb {C}\}$ . Although the real case has been solved, for the sake of brevity and universality, we will present our lemmas, theorems and proofs in the united form $\mathbb {F}$ rather than the single form $\mathbb {C}$ . For a normed space X, we use the notation $S_X, B_X$ and $X^*$ to represent the unit sphere, closed unit ball and dual space of X, respectively. The set of positive integers is denoted by $\mathbb {N}$ .
We start this section with a simple and frequently-used property of phase-isometries between two normed spaces.
Lemma 2.1. Let X and Y be normed spaces and $f: X \rightarrow Y$ a phase-isometry. Then f is a norm-preserving map. Moreover, if f is surjective, then
Proof. With the substitution $y=x$ , it follows from (1.2) that
which shows that f is norm-preserving.
Now suppose that f is surjective. Let us take a nonzero $x\in X$ and $\alpha \in \mathbb {T}$ . The surjectivity guarantees that there exists some $y\in X$ such that $f(y)=\alpha f(x)$ . Then
which implies that
Moreover, we conclude from (1.2) that
which shows that
This competes the proof.
From [Reference Tan and Huang19, Lemma 2], it follows that every surjective phase-isometry between two real normed spaces is injective. The following example shows that a surjective phase-isometry between two complex normed spaces may not be injective.
Example 2.2. Let X be a complex normed space and $x_0\in X\backslash \{0\}$ . Define ${f:X\rightarrow X}$ by $f(\alpha x_0)=\alpha ^2x_0$ for all $\alpha \in \mathbb {T}$ and $f(x)=x$ otherwise. Then f is a surjective phase-isometry, but it is not injective since $f(-x_0)=x_0=f(x_0)$ .
In Example 2.2, f is phase equivalent to the identity mapping, letting the phase function $\sigma $ be $\sigma (\alpha x_0)=\alpha $ for all $\alpha \in \mathbb {T}$ and $\sigma (x)=1$ otherwise.
Recall that a support functional $\phi $ at $x\in X\backslash \{0\}$ is a norm-one linear functional in $X^*$ such that $\phi (x)=\|x\|$ . Denote by $D(x)$ the set of all support functionals at $x\neq 0$ , that is,
The Hahn–Banach theorem implies that $D(x)\neq \emptyset $ for every $x\in X\backslash \{0\}$ . A normed space X is said to be smooth at $x\neq 0$ if there exists a unique supporting functional at x, that is, $D(x)$ consists of only one element. If X is smooth at every $x\neq 0$ , then X is said to be smooth. It follows from [Reference Megginson14, Proposition 5.4.20] that each subspace of a smooth normed space is smooth.
Recall also the concept of Gateaux differentiability. Let X be a normed space, ${x, y\in X}$ . Define
and
It is known [Reference Megginson14, Reference Phelps16] that both $G_+(x,y)$ and $G_-(x,y)$ exist for each $x,y\in X$ and
We say that the norm of X is Gateaux differentiable at $x\neq 0$ whenever $G_+(x,y)=G_-(x,y)$ for all $y\in X$ , in which case the common value of $G_+(x,y)$ and $G_-(x,y)$ is denoted by $G(x,y)$ . It is easy to see that a normed space X is smooth at x if and only if the norm is Gateaux differentiable at x.
A point $\phi \in S_{X^*}$ is said to be a $w^*$ -exposed point of $B_{X^*}$ provided that $\phi $ is the only supporting functional for some smooth point $u\in S_X$ . Recently, Tan and Huang [Reference Tan and Huang19] showed that for every phase-isometry f of a real normed space X into another real normed space Y and every $w^*$ -exposed point $\phi $ of $B_{X^*}$ , there exists $\varphi \in S_{Y^*}$ such that $\phi (x)=\pm \varphi (f(x))$ for all $x\in X$ . This result can be viewed as an extension of Figiel’s theorem, which plays an important role in the study of isometric embedding. We will present a similar result for a phase-isometry between two normed spaces over ${\mathbb {F}\in \{\mathbb {R},\mathbb {C}\}}$ .
Lemma 2.3. Let X and Y be normed spaces and $f:X\rightarrow Y$ a phase-isometry. Then for every $w^*$ -exposed point $\phi $ of $B_{X^*}$ , there exists $\varphi \in S_{Y^*}$ such that
Proof. Let $u\in S_X$ be a smooth point such that $\phi (u)=1$ . For every $n\in \mathbb {N}$ , the Hahn–Banach theorem guarantees the existence of $\varphi _n\in S_{Y^*}$ such that
For $t\in [0,n]$ , there exists some $\alpha _{t,n}\in \mathbb {T}$ such that
Consequently, we deduce that
which implies that $\varphi _n(\alpha _{t,n}f(tu))=t$ . This means that for each $t\in (0, n]$ , there exists a unique $\alpha _{t,n}\in \mathbb {T}$ such that $\varphi _n(f(tu))=\overline {\alpha _{t,n}}t$ . By Alaoglu’s theorem, the sequence $\{\varphi _n\}$ has a cluster point $\varphi \in S_{Y^*}$ in the $w^*$ topology. It follows that for each $t>0$ , there exists $\alpha _t\in \mathbb {T}$ depending only on t such that $\varphi (f(tu))=\alpha _t t$ .
For each $x\in X$ , there exist $\alpha _x, \beta _x\in \mathbb {T}$ such that $\alpha _x\phi (x)=|\phi (x)|$ and $\beta _x\varphi (f(x))=|\varphi (f(x))|$ . For each $n\in \mathbb {N}$ , there exists $\alpha _{x,n}, \beta _{x,n}\in \mathbb {T}$ such that
and
Given that $\mathbb {T}$ is compact, there must be a strictly increasing sequence $\{n_j:j\in \mathbb {N}\}$ in $\mathbb {N}$ and $\alpha ^{\prime }_x,\beta ^{\prime }_x\in \mathbb {T}$ such that $\lim _{j\to \infty }\alpha _{x,n_j}=\alpha ^{\prime }_x$ and $\lim _{j\to \infty }\beta _{x,n_j}=\beta ^{\prime }_x$ . Since $\phi $ is the only supporting functional at u,
and
This completes the proof.
Let V be a vector space. For $M\subset V$ , $[M]$ denotes the subspace generated by M. If $x,y\in V$ , then we write $[x]:=[\{x\}]$ and $[x,y]:=[\{x,y\}]$ for simplicity.
Lemma 2.4. Let X and Y be normed spaces with X being smooth. Suppose that ${f: X \rightarrow Y}$ is a surjective phase-isometry. Then for every $x\in X$ ,
Proof. We first prove that $[f(x)]\subset f([x])$ for each $x\in X$ . Assume, for a contradiction, that $tf(x)\notin f([x])$ for some nonzero $x\in X$ and $t\in \mathbb {F}$ . Since f is surjective, there exists $y\in X$ such that $f(y)=tf(x)$ . The function $s\mapsto \|y-sx\|$ is continuous and its value tends to infinity when $|s|$ tends to infinity. Hence, there is at least one point $s_0\in \mathbb {F}$ such that
Set $E:=[x,y]$ . By the Hahn–Banach theorem, there exists $\phi \in S_{E^*}$ which satisfies $\phi (y)=d$ and $\phi (x)=0$ . Note that E being a two-dimensional subspace of X is reflexive. This guarantees the existence of some $z\in S_E$ such that $\phi (z)=1$ . Since X is smooth, so is its subspace E. Therefore, $\phi $ is the only supporting functional at $z\in S_E$ . We apply Lemma 2.3 to $f|_E: E\rightarrow Y$ to obtain $\varphi \in S_{Y^*}$ such that $|\phi |=|\varphi \circ f|$ on E. Then
which is a contradiction. This proves $[f(x)]\subset f([x])$ .
Conversely, fix a nonzero $x\in X$ . For each $r\in (0,+\infty )$ , by the above inclusion and the norm preserving property of f, there exists some $\alpha _r\in \mathbb {T}$ such that $r^{-1}f(rx)=f(\alpha _r x)$ . For each $\alpha \in \mathbb {T}$ , by Lemma 2.1, there exist $\beta _{r,\alpha },\alpha ^{\prime }_r\in \mathbb {T}$ such that
which implies that $f([x])\subset [f(x)]$ . The proof is complete.
Note that the conclusion of Lemma 2.4 is equivalent to
Lemma 2.5. Let X and Y be normed spaces with X being smooth. Suppose that ${f: X \rightarrow Y}$ is a surjective phase-isometry. Then for every $x,y\in X$ ,
Proof. We only prove the first equality, the second being similar. Let $x, y\in X$ be nonzero and $\alpha \in \mathbb {T}$ . For each $n\in \mathbb {N}$ , Lemma 2.4 and (1.2) imply that there exist $\alpha _n,\beta _n,\gamma _n\in \mathbb {T}$ such that $f(nx)=\alpha _nnf(x)$ and
By the compactness of $\mathbb {T}$ , there is a strictly increasing sequence $\{n_j:j\in \mathbb {N}\}$ in $\mathbb {N}$ and $\beta ,\gamma \in \mathbb {T}$ such that $\lim _{j\to \infty }\beta _{n_j}=\beta $ and $\lim _{j\to \infty }\gamma _{n_j}=\gamma $ . Then
and
The proof is complete.
Lemma 2.6. Let X and Y be normed spaces with X being smooth. Suppose that ${f: X \rightarrow Y}$ is a surjective phase-isometry. Then Y is smooth.
Proof. Let $x\in X$ be a nonzero element with the unique supporting functional ${\phi _x\in D(x)}$ . It suffices to prove that $D(f(x))$ is a singleton set. Let $\varphi ,\psi \in D(f(x))$ and $f(y)\in \ker \varphi $ . For each $\alpha \in \mathbb T$ , Lemma 2.5 implies that there exists $\beta ,\gamma \in \mathbb T$ such that
and
Using the arbitrariness of $\alpha \in \mathbb T$ twice gives $\phi _{x}(y)=0$ by the first inequality and therefore $\psi (f(y))=0$ by the second inequality. This shows that $\ker \varphi \subset \ker \psi $ . Thus, $\psi =\lambda \varphi $ for some $\lambda \in \mathbb F$ . Considering that $\psi ,\varphi \in D(f(x))$ , we find that $\lambda =1$ . This implies that $\psi =\varphi $ , which completes the proof.
Recently, Ilišević and Turnšek [Reference Ilišević and Turnšek10, Theorem 2.2 and Remark 2.1] generalised Wigner’s theorem to smooth normed spaces via semi-inner products. This can be translated into the following theorem in the language of supporting functionals.
Theorem 2.7. Let X and Y be smooth normed spaces over $\mathbb {F}$ and $f:X\rightarrow Y$ a surjective mapping satisfying, for all nonzero $x, y\in X$ ,
Then f is phase equivalent to a linear or anti-linear surjective isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear surjective isometry in the case $\mathbb {F}=\mathbb {R}$ .
Combining the above results gives our main theorem.
Theorem 2.8. Every smooth normed space has the Wigner property.
Proof. Let X and Y be normed spaces with X being smooth. Suppose that $f: X \rightarrow Y$ is a surjective phase-isometry. By Lemma 2.6, Y is smooth. Then Lemma 2.5 implies that for all nonzero $x, y\in X$ ,
Taking the maximum on both sides, for all nonzero $x, y\in X$ ,
By Theorem 2.7, f is phase equivalent to a linear or anti-linear surjective isometry in the case $\mathbb {F}=\mathbb {C}$ and to a linear surjective isometry in the case $\mathbb {F}=\mathbb {R}$ . This completes the proof.
It is well known that $L^p(\mu )$ is a smooth normed space, where $\mu $ is a measure and $1<p<\infty $ . The following corollary is immediate.
Corollary 2.9. $L^{p}(\mu )$ has the Wigner property, where $\mu $ is a measure and ${1<p<\infty }$ .