Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T08:28:17.265Z Has data issue: false hasContentIssue false

Zeros of recurrence sequences

Published online by Cambridge University Press:  17 April 2009

A.J. van der Poorten
Affiliation:
School of Mathematics, Physics Computing and Electronics, Macquarie University, NSW 2109, Australia
H.P. Schlickewei
Affiliation:
Abteilung Mathematik, Universität Ulm, Oberer Eselsberg D 7900 Ulm, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give an upper bound for the number of zeros of recurrence sequences defined over an algebraic number field in terms of their order, the degree of their field of definition and the number of prime ideal divisors of the characteristic roots of the sequence.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Beukers, F., ‘The zero multiplicity of ternary recurrences’ (to appear).Google Scholar
[2]Beukers, F. and Tijdeman, R., ‘On the multiplicities of binary complex recurrences’, Compositio Math. 51 (1984), 193213.Google Scholar
[3]Kubota, K. K., ‘On a conjecture by Morgan Ward I, II, III’, Acta Arith. 33 (1977), 1128, 2948, 99109.CrossRefGoogle Scholar
[4]Laxton, R. R., ‘Linear p–adic recurrences’, Quart. J. Math. Oxford Ser (2) 19 (1968), 305311.CrossRefGoogle Scholar
[5]Mignotte, M., ‘Suites récurrentes linéaires’, Sém. Delange-Pisot-Poitou 15e annéeG14 (1973/1974), p. 9.Google Scholar
[6]van der Poorten, A. J., ‘Zeros of p–adic exponential polynomials’, Nederl. Akad. Wetensch. Proc. Ser. A 79. Indag. Math. 38 (1976), 4649.CrossRefGoogle Scholar
[7]Robba, P., ‘Zéros de suites récurrentes linéaires’, Groupe d'étude d'analyse ultramétrique 5e année13 (1977/1978), p. 5.Google Scholar
[8]Rosser, J. B. and Schoenfeld, L., ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1962), 6494.CrossRefGoogle Scholar
[9]Schlickewei, H. P., ‘Multiplicities of algebraic linear recurrences’ (to appear).Google Scholar
[10]Straβmann, R., ‘Uber den Wertevorrat von Potenzreihen im Gebiet der ρ-adischen Zahlen’, J. für Math. 159 (1928), 1328.Google Scholar