Published online by Cambridge University Press: 01 June 2005
Let $G$ be an additively written abelian group, and let $S$ be a sequence in $G \setminus \{0\}$ with length $|S| \ge 4$. Suppose that $S$ is a product of two subsequences, say $S = B C$, such that the element $g+h$ occurs in the sequence $S$ whenever $g \cdot h$ is a subsequence of $B$ or of $C$. Then $S$ contains a proper zero-sum subsequence, apart from some well-characterized exceptional cases. This result is closely connected with restricted set addition in abelian groups. Moreover, it solves a problem on the structure of minimal zero-sum sequences, which recently occurred in the theory of non-unique factorizations.