Article contents
ON TRANSITIVE PERMUTATION GROUPS WITH PRIMITIVE SUBCONSTITUENTS
Published online by Cambridge University Press: 01 May 1999
Abstract
Let G be a transitive permutation group on a set Ω such that, for ω∈Ω, the stabiliser Gω induces on each of its orbits in Ω\{ω} a primitive permutation group (possibly of degree 1). Let N be the normal closure of Gω in G. Then (Theorem 1) either N factorises as N=GωGδ for some ω, δ∈Ω, or all unfaithful Gω-orbits, if any exist, are infinite. This result generalises a theorem of I. M. Isaacs which deals with the case where there is a finite upper bound on the lengths of the Gω-orbits. Several further results are proved about the structure of G as a permutation group, focussing in particular on the nature of certain G-invariant partitions of Ω.
- Type
- NOTES AND PAPERS
- Information
- Copyright
- © The London Mathematical Society 1999
- 3
- Cited by