Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:14:37.073Z Has data issue: false hasContentIssue false

classification of $\lowercase{n}$-dimensional subvarieties of $g(1,2\lowercase{n})$ that can be projected to $g(1,\lowercase{n+1})$

Published online by Cambridge University Press:  23 September 2005

enrique arrondo
Affiliation:
departamento de algebra, facultad de matemáticas, universidad complutense, 28040 madrid, spainenrique_arrondo@mat.ucm.es, josecarlos_sierra@mat.ucm.es
josé carlos sierra
Affiliation:
departamento de algebra, facultad de matemáticas, universidad complutense, 28040 madrid, spainenrique_arrondo@mat.ucm.es, josecarlos_sierra@mat.ucm.es
luca ugaglia
Affiliation:
dipartimento di matematica, università degli studi di milano, via saldini 50, 20133 milano, italyluca.ugaglia@unimi.it
Get access

Abstract

a structure theorem is given for $n$-dimensional smooth subvarieties of the grassmannian $g(1,n)$, with $n\geq n+3$, that can be isomorphically projected to $g(1,n+1)$. a complete classification in the cases $n=2n+1$ and $n=2n$ follows, as a corollary.

Keywords

Type
papers
Copyright
the london mathematical society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)