Article contents
THE INTEGRALITY OF THE VALUES OF BERNOULLI POLYNOMIALS AND OF GENERALISED BERNOULLI NUMBERS
Published online by Cambridge University Press: 01 January 1997
Abstract
In [1] Almkvist and Meurman proved a result on the values of the Bernoulli polynomials (Theorem 5 below). Subsequently, Sury [5] and Bartz and Rutkowski [2] have given simpler proofs.
In this paper we show how this theorem can be obtained from classical results on the arithmetic of the Bernoulli numbers. The other ingredient is the remark that a polynomial with rational coefficients which is integer-valued on the integers is ℤ(p)-valued on ℤ(p). Here ℤ(p) denotes the ring of rational numbers whose denominator is not divisible by the prime p. An application is given in Section 3 to the arithmetic of generalised Bernoulli numbers.
- Type
- Research Article
- Information
- Copyright
- © The London Mathematical Society 1997
- 5
- Cited by