No CrossRef data available.
Published online by Cambridge University Press: 02 February 2004
Let $G$ be a simple simply connected complex Lie group. Some criteria are given for the nonexistence of exceptional principal $G$-bundles over a complex projective surface. As an application, it is shown that there are no exceptional $G$-bundles over a surface whose arithmetic genus is zero or one. It is also shown that there are no stable exceptional $G$-bundles over an abelian surface.