Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T16:03:03.531Z Has data issue: false hasContentIssue false

ON THE EXISTENCE OF EXTREMALS FOR THE SOBOLEV TRACE EMBEDDING THEOREM WITH CRITICAL EXPONENT

Published online by Cambridge University Press:  08 February 2005

JULIÁN FERNÁNDEZ BONDER
Affiliation:
Departemento de Matemática, FCEyN, UBA (1428) Buenos Aires, Argentinajfbonder@dm.uba.ar
JULIO D. ROSSI
Affiliation:
Departamento de Matemática, Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chilejrossi@riemann.mat.puc.cl
Get access

Abstract

In this paper, the existence problem is studied for extremals of the Sobolev trace inequality $W^{1,p}(\Omega)\to L^{p_*}(\partial\Omega)$, where $\Omega$ is a bounded smooth domain in $\RR^N$, $p_*=p(N-1)/(N-p)$ is the critical Sobolev exponent, and $1<p<N$.

Type
Papers
Copyright
© The London Mathematical Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by Fundacion Antorchas, CONICET, ANPCyT PICT Nos 05009 and 10608, and UBA X066.