Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T16:17:08.860Z Has data issue: false hasContentIssue false

SYMMETRY OF WEIGHTED $L{\uppercase{\footnotesize{L^1}}}$-ALGEBRAS AND THE GRS-CONDITION

Published online by Cambridge University Press:  24 July 2006

GERO FENDLER
Affiliation:
Finstertal 16, D-69514 Laudenbach, Germanygero.fendler@t-online.de
KARLHEINZ GRÖCHENIG
Affiliation:
GSF – National Research Center for Environmental and Health, Institute of Biomathematics and Biometry, Ingolstädter Str. 1, D-85764 Neuherberg, Germanykarlheinz.groechenig@gsf.de Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austriakarlheinz-groechenig@univie.ac.at
MICHAEL LEINERT
Affiliation:
Institut für Angewandte Mathematik, Fakultät für Mathematik, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germanyleinert@math.uni-heidelberg.de
Get access

Abstract

Let $G$ be a compactly generated, locally compact group of polynomial growth. Removing a restrictive technical condition from a previous work, we show that the weighted group algebra $L^{1}_{\omega}(G)$ is a symmetric Banach $*$-algebra if and only if the weight function $\omega $ satisfies the GRS-condition. This condition expresses in a precise technical sense that $\omega $ grows subexponentially.

Keywords

Type
Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)